我正在处理hdf = pandas.HDFStore('Survey.h5')
通过 pandas 包从 h5 文件加载的调查数据。其中DataFrame
,所有行都是单个调查的结果,而列是单个调查中所有问题的答案。
我的目标是将这个数据集缩小到一个更小的数据集,DataFrame
只包括在某个问题上具有某个描述的答案的行,即该列中的所有值都相同。我能够确定具有此条件的所有行的索引值,但我找不到如何删除这些行或仅使用这些行创建一个新的 df。
In [36]: df
Out[36]:
A B C D
a 0 2 6 0
b 6 1 5 2
c 0 2 6 0
d 9 3 2 2
In [37]: rows
Out[37]: ['a', 'c']
In [38]: df.drop(rows)
Out[38]:
A B C D
b 6 1 5 2
d 9 3 2 2
In [39]: df[~((df.A == 0) & (df.B == 2) & (df.C == 6) & (df.D == 0))]
Out[39]:
A B C D
b 6 1 5 2
d 9 3 2 2
In [40]: df.ix[rows]
Out[40]:
A B C D
a 0 2 6 0
c 0 2 6 0
In [41]: df[((df.A == 0) & (df.B == 2) & (df.C == 6) & (df.D == 0))]
Out[41]:
A B C D
a 0 2 6 0
c 0 2 6 0
如果您已经知道可以使用的索引.loc
:
In [12]: df = pd.DataFrame({"a": [1,2,3,4,5], "b": [4,5,6,7,8]})
In [13]: df
Out[13]:
a b
0 1 4
1 2 5
2 3 6
3 4 7
4 5 8
In [14]: df.loc[[0,2,4]]
Out[14]:
a b
0 1 4
2 3 6
4 5 8
In [15]: df.loc[1:3]
Out[15]:
a b
1 2 5
2 3 6
3 4 7