我正在使用多处理的进程和队列。我并行启动了几个函数,并且大多数函数都表现良好:它们完成,它们的输出进入它们的队列,它们显示为 .is_alive() == False。但是由于某种原因,一些函数没有运行。它们总是显示 .is_alive() == True,即使在函数的最后一行(打印语句说“完成”)完成之后也是如此。无论我启动了哪些功能,都会发生这种情况,即使它只有一个。如果不并行运行,则函数运行良好并正常返回。什么样的事情可能是问题?
这是我用来管理作业的通用函数。我没有展示的只是我传递给它的函数。它们很长,经常使用 matplotlib,有时会启动一些 shell 命令,但我无法弄清楚失败的命令有什么共同点。
def runFunctionsInParallel(listOf_FuncAndArgLists):
"""
Take a list of lists like [function, arg1, arg2, ...]. Run those functions in parallel, wait for them all to finish, and return the list of their return values, in order.
"""
from multiprocessing import Process, Queue
def storeOutputFFF(fff,theArgs,que): #add a argument to function for assigning a queue
print 'MULTIPROCESSING: Launching %s in parallel '%fff.func_name
que.put(fff(*theArgs)) #we're putting return value into queue
print 'MULTIPROCESSING: Finished %s in parallel! '%fff.func_name
# We get this far even for "bad" functions
return
queues=[Queue() for fff in listOf_FuncAndArgLists] #create a queue object for each function
jobs = [Process(target=storeOutputFFF,args=[funcArgs[0],funcArgs[1:],queues[iii]]) for iii,funcArgs in enumerate(listOf_FuncAndArgLists)]
for job in jobs: job.start() # Launch them all
import time
from math import sqrt
n=1
while any([jj.is_alive() for jj in jobs]): # debugging section shows progress updates
n+=1
time.sleep(5+sqrt(n)) # Wait a while before next update. Slow down updates for really long runs.
print('\n---------------------------------------------------\n'+ '\t'.join(['alive?','Job','exitcode','Func',])+ '\n---------------------------------------------------')
print('\n'.join(['%s:\t%s:\t%s:\t%s'%(job.is_alive()*'Yes',job.name,job.exitcode,listOf_FuncAndArgLists[ii][0].func_name) for ii,job in enumerate(jobs)]))
print('---------------------------------------------------\n')
# I never get to the following line when one of the "bad" functions is running.
for job in jobs: job.join() # Wait for them all to finish... Hm, Is this needed to get at the Queues?
# And now, collect all the outputs:
return([queue.get() for queue in queues])