对于更复杂的实验设计,有几个关于混合模型的问题和帖子,所以我认为这个更简单的模型会帮助这个过程中的其他初学者以及我。
所以,我的问题是我想用 sas proc 混合程序在 R 中制定一个重复测量 ancova:
proc mixed data=df1;
FitStatistics=akaike
class GROUP person day;
model Y = GROUP X1 / solution alpha=.1 cl;
repeated / type=cs subject=person group=GROUP;
lsmeans GROUP;
run;
这是使用 R 中创建的数据的 SAS 输出(如下):
.           Effect       panel    Estimate       Error      DF    t Value    Pr > |t|     Alpha       Lower       Upper
            Intercept              -9.8693      251.04       7      -0.04      0.9697       0.1     -485.49      465.75
            panel        1         -247.17      112.86       7      -2.19      0.0647       0.1     -460.99    -33.3510
            panel        2               0           .       .        .         .             .           .           .
            X1                     20.4125     10.0228       7       2.04      0.0811       0.1      1.4235     39.4016
下面是我如何使用“nlme”包在 R 中制定模型,但没有得到类似的系数估计:
## create reproducible example fake panel data set:
set.seed(94); subject.id = abs(round(rnorm(10)*10000,0))
set.seed(99); sds = rnorm(10,15,5);means = 1:10*runif(10,7,13);trends = runif(10,0.5,2.5)
this = NULL; set.seed(98)
for(i in 1:10) { this = c(this,rnorm(6, mean = means[i], sd = sds[i])*trends[i]*1:6)}
set.seed(97)
that = sort(rep(rnorm(10,mean = 20, sd = 3),6))
df1 = data.frame(day = rep(1:6,10), GROUP = c(rep('TEST',30),rep('CONTROL',30)),
                 Y = this,
                 X1 = that,
                 person = sort(rep(subject.id,6)))
## use package nlme
require(nlme)
## run repeated measures mixed model using compound symmetry covariance structure:
summary(lme(Y ~ GROUP + X1, random = ~ +1 | person,
            correlation=corCompSymm(form=~day|person), na.action = na.exclude,
            data = df1,method='REML'))
现在,我现在意识到的 R 的输出类似于以下的输出lm():
                Value Std.Error DF    t-value p-value
(Intercept) -626.1622  527.9890 50 -1.1859379  0.2413
GROUPTEST   -101.3647  156.2940  7 -0.6485518  0.5373
X1            47.0919   22.6698  7  2.0772934  0.0764
我相信我已经接近规范,但不确定我缺少什么来使结果匹配(在合理范围内)。任何帮助,将不胜感激!
更新:使用下面答案中的代码,R 输出变为:
> summary(model2)
滚动到底部查看参数估计值——看!与 SAS 相同。
Linear mixed-effects model fit by REML
 Data: df1 
      AIC      BIC   logLik
  776.942 793.2864 -380.471
Random effects:
 Formula: ~GROUP - 1 | person
 Structure: Diagonal
        GROUPCONTROL GROUPTEST Residual
StdDev:      184.692  14.56864 93.28885
Correlation Structure: Compound symmetry
 Formula: ~day | person 
 Parameter estimate(s):
         Rho 
-0.009929987 
Variance function:
 Structure: Different standard deviations per stratum
 Formula: ~1 | GROUP 
 Parameter estimates:
    TEST  CONTROL 
1.000000 3.068837
Fixed effects: Y ~ GROUP + X1 
                Value Std.Error DF    t-value p-value
(Intercept)   -9.8706 251.04678 50 -0.0393178  0.9688
GROUPTEST   -247.1712 112.85945  7 -2.1900795  0.0647
X1            20.4126  10.02292  7  2.0365914  0.0811
    
