我已经开始学习 OpenCL,目前我正在尝试测试我可以在多大程度上提高简单骨骼动画算法的性能。为此,我编写了一个程序,从随机生成的顶点和变换矩阵执行骨骼动画两次,一次使用纯 C++ 中的 SSE 优化线性代数库,一次使用我自己在 GPU 上的 OpenCL 内核(我正在测试英伟达 GTX 460)。
我从一个简单的内核开始,其中每个工作项只转换一个顶点,所有值都从全局内存中读取。因为我对这个内核的性能不满意,所以我尝试了一点优化。我当前的内核如下所示:
inline float4 MultiplyMatrixVector(float16 m, float4 v)
{
return (float4) (
dot(m.s048C, v),
dot(m.s159D, v),
dot(m.s26AE, v),
dot(m.s37BF, v)
);
}
kernel void skelanim(global const float16* boneMats, global const float4* vertices, global const float4* weights, global const uint4* indices, global float4* resVertices)
{
int gid = get_global_id(0);
int lid = get_local_id(0);
local float16 lBoneMats[NUM_BONES];
async_work_group_copy(lBoneMats, boneMats, NUM_BONES, 0);
barrier(CLK_LOCAL_MEM_FENCE);
for (int i = 0 ; i < NUM_VERTICES_PER_WORK_ITEM ; i++) {
int vidx = gid*NUM_VERTICES_PER_WORK_ITEM + i;
float4 vertex = vertices[vidx];
float4 w = weights[vidx];
uint4 idx = indices[vidx];
resVertices[vidx] = (MultiplyMatrixVector(lBoneMats[idx.x], vertex * w.x)
+ MultiplyMatrixVector(lBoneMats[idx.y], vertex * w.y)
+ MultiplyMatrixVector(lBoneMats[idx.z], vertex * w.z)
+ MultiplyMatrixVector(lBoneMats[idx.w], vertex * w.w));
}
}
现在我为每个工作项处理恒定数量的顶点,并且我只为每个工作项将所有骨骼矩阵预取到本地内存中一次,我相信这会带来更好的性能,因为可以从中读取多个顶点的矩阵之后更快的本地内存。不幸的是,这个内核的性能比我第一次尝试的要差,甚至比只使用 CPU 的实现还要差。
为什么这种本应优化的性能如此糟糕?
如果有帮助,这是我执行内核的方式:
#define NUM_BONES 50
#define NUM_VERTICES 30000
#define NUM_VERTICES_PER_WORK_ITEM 100
#define NUM_ANIM_REPEAT 1000
uint64_t PerformOpenCLSkeletalAnimation(Matrix4* boneMats, Vector4* vertices, float* weights, uint32_t* indices, Vector4* resVertices)
{
File kernelFile("/home/alemariusnexus/test/skelanim.cl");
char opts[256];
sprintf(opts, "-D NUM_VERTICES=%u -D NUM_REPEAT=%u -D NUM_BONES=%u -D NUM_VERTICES_PER_WORK_ITEM=%u", NUM_VERTICES, NUM_ANIM_REPEAT, NUM_BONES, NUM_VERTICES_PER_WORK_ITEM);
cl_program prog = BuildOpenCLProgram(kernelFile, opts);
cl_kernel kernel = clCreateKernel(prog, "skelanim", NULL);
cl_mem boneMatBuf = clCreateBuffer(ctx, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, NUM_BONES*sizeof(Matrix4), boneMats, NULL);
cl_mem vertexBuf = clCreateBuffer(ctx, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, NUM_VERTICES*sizeof(Vector4), vertices, NULL);
cl_mem weightBuf = clCreateBuffer(ctx, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, NUM_VERTICES*4*sizeof(float), weights, NULL);
cl_mem indexBuf = clCreateBuffer(ctx, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, NUM_VERTICES*4*sizeof(uint32_t), indices, NULL);
cl_mem resVertexBuf = clCreateBuffer(ctx, CL_MEM_WRITE_ONLY | CL_MEM_ALLOC_HOST_PTR, NUM_VERTICES*sizeof(Vector4), NULL, NULL);
uint64_t s, e;
s = GetTickcount();
clSetKernelArg(kernel, 0, sizeof(cl_mem), &boneMatBuf);
clSetKernelArg(kernel, 1, sizeof(cl_mem), &vertexBuf);
clSetKernelArg(kernel, 2, sizeof(cl_mem), &weightBuf);
clSetKernelArg(kernel, 3, sizeof(cl_mem), &indexBuf);
clSetKernelArg(kernel, 4, sizeof(cl_mem), &resVertexBuf);
size_t globalWorkSize[] = { NUM_VERTICES / NUM_VERTICES_PER_WORK_ITEM };
size_t localWorkSize[] = { NUM_BONES };
for (size_t i = 0 ; i < NUM_ANIM_REPEAT ; i++) {
clEnqueueNDRangeKernel(cq, kernel, 1, NULL, globalWorkSize, localWorkSize, 0, NULL, NULL);
}
clEnqueueReadBuffer(cq, resVertexBuf, CL_TRUE, 0, NUM_VERTICES*sizeof(Vector4), resVertices, 0, NULL, NULL);
e = GetTickcount();
return e-s;
}
我想还有更多可以优化的东西,也许将其他一些全局读取批处理在一起,但首先我真的很想知道为什么第一次优化不起作用。