我正在学习 OpenACC(使用 PGI 的编译器)并尝试优化矩阵乘法示例。到目前为止,我提出的最快的实现如下:
void matrix_mul(float *restrict r, float *a, float *b, int N, int accelerate){
#pragma acc data copyin (a[0: N * N ], b[0: N * N]) copyout (r [0: N * N ]) if(accelerate)
{
# pragma acc region if(accelerate)
{
# pragma acc loop independent vector(32)
for (int j = 0; j < N; j ++)
{
# pragma acc loop independent vector(32)
for (int i = 0; i < N ; i ++ )
{
float sum = 0;
for (int k = 0; k < N ; k ++ ) {
sum += a [ i + k*N ] * b [ k + j * N ];
}
r[i + j * N ] = sum ;
}
}
}
}
这会产生大小为 32x32 线程的线程块,并为我提供迄今为止最好的性能。以下是基准:
Matrix multiplication (1500x1500):
GPU: Geforce GT650 M, 64-bit Linux
Data sz : 1500
Unaccelerated:
matrix_mul() time : 5873.255333 msec
Accelerated:
matrix_mul() time : 420.414700 msec
Data size : 1750 x 1750
matrix_mul() time : 876.271200 msec
Data size : 2000 x 2000
matrix_mul() time : 1147.783400 msec
Data size : 2250 x 2250
matrix_mul() time : 1863.458100 msec
Data size : 2500 x 2500
matrix_mul() time : 2516.493200 msec
不幸的是,我意识到生成的 CUDA 代码非常原始(例如,它甚至不使用共享内存),因此无法与手动优化的 CUDA 程序竞争。作为参考实现,我采用了 Arrayfire 库,结果如下:
Arrayfire 1500 x 1500 matrix mul
CUDA toolkit 4.2, driver 295.59
GPU0 GeForce GT 650M, 2048 MB, Compute 3.0 (single,double)
Memory Usage: 1932 MB free (2048 MB total)
af: 0.03166 seconds
Arrayfire 1750 x 1750 matrix mul
af: 0.05042 seconds
Arrayfire 2000 x 2000 matrix mul
af: 0.07493 seconds
Arrayfire 2250 x 2250 matrix mul
af: 0.10786 seconds
Arrayfire 2500 x 2500 matrix mul
af: 0.14795 seconds
我想知道是否有任何建议如何从 OpenACC 获得更好的性能?也许我选择的指令不正确?