我有一个带有这些签名的 dotProduct 方法:
template<typename It, typename It2>
typename DetermineResultType< typename std::iterator_traits<It>::value_type, typename std::iterator_traits<It2>::value_type>::Result dotProduct(It source, It2 source, const size_t size);
template<typename R, typename It, typename It2>
R dotProduct(It source, It2 source, const size_t size);
一切正常,直到我尝试:
char * s, * s2;
int result = dotProduct<int>(s, s2, 3);
有了这个,我得到了std::iterator_traits<int>::value_type
未定义的错误。
我该如何解决这个问题,以便我可以自动确定第一个声明的结果类型?(方法的名称必须保持不变)。我使用一些规则来确定结果类型,但这并不重要。
基本上问题归结为是否std::iterator_traits<It>::value_type
定义 - 当使用非专业 std::iterator_traits 时。我能以某种方式检测到这一点吗?如果不是,我还有什么其他选择?
好的,现在示例下的作品,但我如何做同样的伎俩我的确定计算类型又名确定结果类型是这样定义的:???
//! Template IF predicate implementation
template <bool B, typename TrueResult, typename FalseResult>
class TemplateIf {
public:
//! The result of template IF predicate
typedef TrueResult Result;
};
//! Template IF predicate implementation - specialization for false condition
template <typename TrueResult, typename FalseResult>
class TemplateIf<false, TrueResult, FalseResult> {
public:
//! The result of template IF predicate
typedef FalseResult Result;
};
template <typename T1, typename T2>
class DetermineComputationType {
public:
//! The determined result type
// If (isSpecialized(T1) && isSpecialized(T2)) {
typedef typename TemplateIf< std::numeric_limits<T1>::is_specialized && std::numeric_limits<T2>::is_specialized,
// If (! isInteger(T1) && isInteger(T2) )
// return T1;
typename TemplateIf< ! std::numeric_limits<T1>::is_integer && std::numeric_limits<T2>::is_integer, T1,
// Else if (! isInteger(T2) && isInteger(T1) )
// return T2;
typename TemplateIf< ! std::numeric_limits<T2>::is_integer && std::numeric_limits<T1>::is_integer, T2,
// Else if ( sizeof(T1) > sizeof(T2) )
// return T1;
typename TemplateIf< (sizeof(T1) > sizeof(T2)), T1,
// Else if ( sizeof(T2) > sizeof(T1) )
// return T2;
typename TemplateIf< (sizeof(T2) > sizeof(T1)), T2,
// Else if ( isSigned(T2) )
// return T1;
// Else
// return T2;
// }
typename TemplateIf< std::numeric_limits<T2>::is_signed, T1, T2>::Result >::Result >::Result >::Result >::Result,
// Else if ( sizeof(T2> > sizeof(T1) )
// return T2;
// Else
// return T1;
typename TemplateIf< (sizeof(T2) > sizeof(T1)), T2, T1 >::Result >::Result Result;
};
/*!
\brief Helper class for computation type determination - works for 3 types
\tparam T1 The first type for computation type determination
\tparam T2 The second type for computation type determination
\tparam T3 The third type for computation type determination
The result is computed in order: (T1, (T2, T3))
*/
template <typename T1, typename T2, typename T3>
class DetermineComputationType2 {
public:
//! The computation type result
typedef typename DetermineComputationType<T1, typename DetermineComputationType<T2, T3>::Result >::Result Result;
};
template <typename T1, typename T2>
class DetermineReturnComputationType {
public:
typedef typename std::iterator_traits<T1>::value_type T1Type;
typedef typename std::iterator_traits<T2>::value_type T2Type;
typedef typename DetermineComputationType<T1Type, T2Type>::Result Result;
};
//! For description see cpputil::dotProduct()
template <typename R, typename Ct, typename It, typename It2>
inline R dotProductRCtItIt2(It source, It2 source2, const size_t size) {
Ct result = Ct();
for (size_t i = 0; i < size; ++i)
result += static_cast<Ct>(source[i]) * static_cast<Ct>(source2[i]);
return static_cast<R>(result);
}
/*!
\brief Returns the dot product of vectors
\param[in] source The iterator to the start of source vector
\param[in] source2 The iterator to the start of second source vector
\param[in] size The size of vector(s)
*/
template <typename R, typename Ct, typename It, typename It2>
inline R dotProduct(It source, It2 source2, const size_t size) {
return arithmeticsInternal::dotProductRCtItIt2<R, Ct, It, It2>(source, source2, size);
}
//! Convenience method - see above for description
template <typename R, typename It, typename It2>
inline R dotProduct(It source, It2 source2, const size_t size) {
typedef typename std::iterator_traits<It>::value_type ItType;
typedef typename std::iterator_traits<It2>::value_type It2Type;
typedef typename arithmeticsInternal::DetermineComputationType2<R, ItType, It2Type>::Result Ct;
return arithmeticsInternal::dotProductRCtItIt2<R, Ct, It, It2>(source, source2, size);
}
//! Convenience method - see above for description
template <typename It, typename It2>
inline typename arithmeticsInternal::DetermineReturnComputationType<It, It2>::Result dotProduct(It source, It2 source2, const size_t size) {
//typedef typename std::iterator_traits<It>::value_type ItType;
//typedef typename std::iterator_traits<It2>::value_type It2Type;
typedef typename arithmeticsInternal::DetermineReturnComputationType<It, It2>::Result R;
return arithmeticsInternal::dotProductRCtItIt2<R, R, It, It2>(source, source2, size);
}