0

当我运行下面的整个代码时,这一行:

res=self.con.execute(

从这个函数(其中 getfeatures 返回一个字典):

def fcount(self,f,cat):
    res=self.con.execute(
      'select count from fc where feature="%s" and category="%s"'
      %(f,cat)).fetchone()
    if res==None: return 0
    else: return float(res[0])

产生此错误:

AttributeError: naivebayes instance has no attribute 'con'              

我已经安装了 pysqlite2,当我运行 pysqlite2 测试时,我得到了确定。

我还尝试使用内置的 sqlite3 而不是 pysqlite2 (执行import sqlite3语句并替换self.con=sqlite.connect(dbfile)self.con=sqlite3.connect(":memory:"),但它也不起作用。

如何修复此错误?

谢谢你的帮助。

这里是整个代码:

from pysqlite2 import dbapi2 as sqlite

import re
import math

def getfeatures(doc):
  splitter=re.compile('\\W*')
  # Split the words by non-alpha characters
  words=[s.lower() for s in splitter.split(doc)
          if len(s)>2 and len(s)<20]
  # Return the unique set of words only
#  return dict([(w,1) for w in words]).iteritems()
  return dict([(w,1) for w in words])

class classifier:
  def __init__(self,getfeatures,filename=None):
    # Counts of feature/category combinations
    self.fc={}
    # Counts of documents in each category
    self.cc={}
    self.getfeatures=getfeatures

  def setdb(self,dbfile):
    self.con=sqlite.connect(dbfile)
    self.con.execute('create table if not exists fc(feature,category,count)')
    self.con.execute('create table if not exists cc(category,count)')


  def incf(self,f,cat):
    count=self.fcount(f,cat)
    if count==0:
      self.con.execute("insert into fc values ('%s','%s',1)"
                       % (f,cat))
    else:
      self.con.execute(
        "update fc set count=%d where feature='%s' and category='%s'"
        % (count+1,f,cat))

  def fcount(self,f,cat):
    res=self.con.execute(
      'select count from fc where feature="%s" and category="%s"'
      %(f,cat)).fetchone()
    if res==None: return 0
    else: return float(res[0])

  def incc(self,cat):
    count=self.catcount(cat)
    if count==0:
      self.con.execute("insert into cc values ('%s',1)" % (cat))
    else:
      self.con.execute("update cc set count=%d where category='%s'"
                       % (count+1,cat))

  def catcount(self,cat):
    res=self.con.execute('select count from cc where category="%s"'
                         %(cat)).fetchone()
    if res==None: return 0
    else: return float(res[0])

  def categories(self):
    cur=self.con.execute('select category from cc');
    return [d[0] for d in cur]

  def totalcount(self):
    res=self.con.execute('select sum(count) from cc').fetchone();
    if res==None: return 0
    return res[0]


  def train(self,item,cat):
    features=self.getfeatures(item)
    # Increment the count for every feature with this category
    for f in features.keys():
##    for f in features:
      self.incf(f,cat)
    # Increment the count for this category
    self.incc(cat)
    self.con.commit()

  def fprob(self,f,cat):
    if self.catcount(cat)==0: return 0

    # The total number of times this feature appeared in this
    # category divided by the total number of items in this category
    return self.fcount(f,cat)/self.catcount(cat)

  def weightedprob(self,f,cat,prf,weight=1.0,ap=0.5):
    # Calculate current probability
    basicprob=prf(f,cat)

    # Count the number of times this feature has appeared in
    # all categories
    totals=sum([self.fcount(f,c) for c in self.categories()])

    # Calculate the weighted average
    bp=((weight*ap)+(totals*basicprob))/(weight+totals)
    return bp




class naivebayes(classifier):

  def __init__(self,getfeatures):
    classifier.__init__(self,getfeatures)
    self.thresholds={}

  def docprob(self,item,cat):
    features=self.getfeatures(item)

    # Multiply the probabilities of all the features together
    p=1
    for f in features: p*=self.weightedprob(f,cat,self.fprob)
    return p

  def prob(self,item,cat):
    catprob=self.catcount(cat)/self.totalcount()
    docprob=self.docprob(item,cat)
    return docprob*catprob

  def setthreshold(self,cat,t):
    self.thresholds[cat]=t

  def getthreshold(self,cat):
    if cat not in self.thresholds: return 1.0
    return self.thresholds[cat]

  def classify(self,item,default=None):
    probs={}
    # Find the category with the highest probability
    max=0.0
    for cat in self.categories():
      probs[cat]=self.prob(item,cat)
      if probs[cat]>max:
        max=probs[cat]
        best=cat

    # Make sure the probability exceeds threshold*next best
    for cat in probs:
      if cat==best: continue
      if probs[cat]*self.getthreshold(best)>probs[best]: return default
    return best


def sampletrain(cl):
  cl.train('Nobody owns the water.','good')
  cl.train('the quick rabbit jumps fences','good')
  cl.train('buy pharmaceuticals now','bad')
  cl.train('make quick money at the online casino','bad')
  cl.train('the quick brown fox jumps','good')


nb = naivebayes(getfeatures)

sampletrain(nb)

#print ('\nbuy is classified as %s'%nb.classify('buy'))
#print ('\nquick is classified as %s'%nb.classify('quick'))

##print getfeatures('Nobody owns the water.')
4

3 回答 3

0

您的代码在 中设置连接setdb,但从不调用该方法。也许您可以从__init__方法中调用它。

于 2012-08-01T22:10:48.240 回答
0

你的代码是一团糟。首先阅读http://www.python.org/dev/peps/pep-0008/。从对象继承新类,使用super()函数而不是直接调用来调用父方法,是的 -在使用 con 属性之前将self.set_db()调用放入方法中。在没有这样的属性时引发,它与 db 根本无关。__init__AttributeError: naivebayes instance has no attribute 'con'

于 2012-08-01T22:19:57.703 回答
0

在第 133 页上的“持久化训练分类器”部分下,它说:“初始化分类器后,您需要使用数据库文件的名称调用 setdb 方法。” 那应该可以解决您的问题。

示例:
cl = docclass.fisherclassifier(docclass.getwords)
cl.setdb('test1.db')

于 2017-11-19T03:05:35.700 回答