23

我在互联网上搜索了有关段树的实现,但在延迟传播方面一无所获。之前有一些关于堆栈溢出的问题,但他们专注于解决 SPOJ 的一些特定问题。虽然我认为这是使用伪代码对段树的最佳解释,但我需要使用延迟传播来实现它。我发现以下链接:

http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=lowestCommonAncestor#Segment_Trees

除了上面的链接,一些博客也在那里,但它们都引用了同一个线程。

例子

应用这种数据结构的一个例子是,假设我得到了一个从 1 到 n 的数字范围。现在我执行一些操作,例如将一些常数添加到特定范围或从特定范围中减去一些常数。执行操作后,我应该告诉给定数字中的最小和最大数字。

一个明显的解决方案是对给定范围内的每个数字一个一个地执行加法或减法。但这在执行的操作都不大的情况下是不可行的。

更好的方法是使用带有惰性传播技术的段树。它说不是单独对每个数字执行更新操作,而是跟踪所有操作,直到所有操作完成。然后最后执行更新操作,得到范围内的最小和最大数。

真实数据示例

假设我给出了范围 [1,10],这意味着数字是 1,2,3,4,5,6,7,8,9,10。现在假设我执行一个将 [3,6] 范围内的数字减少 4 的操作,所以现在数字看起来像 1,2,-1,0,1,2,7,8,9,10。现在我执行另一个操作,将 [5,9] 范围内的数字增加 1,因此数字现在看起来像 1,2,-1,0,2,3,8,9,10,10。

现在,如果我要求您告诉我最大和最小数字,那么答案将是:

Maximum = 10

Minimum = -1

这只是一个简单的例子。实际的问题可能包含数千个这样的加法/减法运算。我希望现在清楚了。

这是我到目前为止所理解的,但我想互联网上没有统一的链接可以更好地解释概念和实现。

谁能给出一些很好的解释,包括段树中延迟传播的伪代码?

谢谢。

4

5 回答 5

20

惰性传播几乎总是包含某种哨兵机制。您必须验证当前节点不需要传播,并且此检查应该简单快捷。所以有两种可能:

  1. 牺牲一点内存在你的节点中保存一个字段,可以很容易地检查
  2. 牺牲一点运行时间,以检查节点是否已传播以及是否必须创建其子节点。

我坚持第一个。检查分段树中的节点是否应该有子节点(node->lower_value != node->upper_value)非常简单,但是您还必须检查这些子节点是否已经构建(node->left_child, node->right_child),所以我引入了一个传播标志node->propagated

typedef struct lazy_segment_node{
  int lower_value;
  int upper_value;

  struct lazy_segment_node * left_child;
  struct lazy_segment_node * right_child;

  unsigned char propagated;
} lazy_segment_node;

初始化

为了初始化一个节点,我们initialize使用指向节点指针(或NULL)的指针和所需的upper_value/来调用lower_value

lazy_segment_node * initialize(
    lazy_segment_node ** mem, 
    int lower_value, 
    int upper_value
){
  lazy_segment_node * tmp = NULL;
  if(mem != NULL)
    tmp = *mem;
  if(tmp == NULL)
    tmp = malloc(sizeof(lazy_segment_node));
  if(tmp == NULL)
    return NULL;
  tmp->lower_value = lower_value;
  tmp->upper_value = upper_value;
  tmp->propagated = 0;
  tmp->left_child = NULL;
  tmp->right_child = NULL;
  
  if(mem != NULL)
    *mem = tmp;
  return tmp;
}

使用权

到目前为止,还没有做任何特别的事情。这看起来像所有其他通用节点创建方法。但是,为了创建实际的子节点并设置传播标志,我们可以使用一个函数,该函数将返回同一节点上的指针,但在需要时传播它:

lazy_segment_node * accessErr(lazy_segment_node* node, int * error){
  if(node == NULL){
    if(error != NULL)
      *error = 1;
    return NULL;
  }
  /* if the node has been propagated already return it */
  if(node->propagated)
    return node;

  /* the node doesn't need child nodes, set flag and return */      
  if(node->upper_value == node->lower_value){
    node->propagated = 1;
    return node;
  }

  /* skipping left and right child creation, see code below*/
  return node;
}

如您所见,传播的节点几乎会立即退出该函数。相反,未传播的节点将首先检查它是否实际上应该包含子节点,然后在需要时创建它们。

这实际上是惰性评估。在需要之前不要创建子节点。注意accessErr还提供了一个额外的错误接口。如果您不需要它,请access改用:

lazy_segment_node * access(lazy_segment_node* node){
  return accessErr(node,NULL);
}

自由的

为了释放这些元素,您可以使用通用节点释放算法:

void free_lazy_segment_tree(lazy_segment_node * root){
  if(root == NULL)
    return;
  free_lazy_segment_tree(root->left_child);
  free_lazy_segment_tree(root->right_child);
  free(root);
}

完整示例

以下示例将使用上述函数创建基于区间 [1,10] 的惰性求值段树。可以看到第一次初始化后test没有子节点。通过使用access,您实际上生成了这些子节点并可以获得它们的值(如果这些子节点通过分段树的逻辑存在):

代码

#include <stdlib.h>
#include <stdio.h>

typedef struct lazy_segment_node{
  int lower_value;
  int upper_value;
  
  unsigned char propagated;
  
  struct lazy_segment_node * left_child;
  struct lazy_segment_node * right_child;
} lazy_segment_node;

lazy_segment_node * initialize(lazy_segment_node ** mem, int lower_value, int upper_value){
  lazy_segment_node * tmp = NULL;
  if(mem != NULL)
    tmp = *mem;
  if(tmp == NULL)
    tmp = malloc(sizeof(lazy_segment_node));
  if(tmp == NULL)
    return NULL;
  tmp->lower_value = lower_value;
  tmp->upper_value = upper_value;
  tmp->propagated = 0;
  tmp->left_child = NULL;
  tmp->right_child = NULL;
  
  if(mem != NULL)
    *mem = tmp;
  return tmp;
}

lazy_segment_node * accessErr(lazy_segment_node* node, int * error){
  if(node == NULL){
    if(error != NULL)
      *error = 1;
    return NULL;
  }
  if(node->propagated)
    return node;
  
  if(node->upper_value == node->lower_value){
    node->propagated = 1;
    return node;
  }
  node->left_child = initialize(NULL,node->lower_value,(node->lower_value + node->upper_value)/2);
  if(node->left_child == NULL){
    if(error != NULL)
      *error = 2;
    return NULL;
  }
  
  node->right_child = initialize(NULL,(node->lower_value + node->upper_value)/2 + 1,node->upper_value);
  if(node->right_child == NULL){
    free(node->left_child);
    if(error != NULL)
      *error = 3;
    return NULL;
  }  
  node->propagated = 1;
  return node;
}

lazy_segment_node * access(lazy_segment_node* node){
  return accessErr(node,NULL);
}

void free_lazy_segment_tree(lazy_segment_node * root){
  if(root == NULL)
    return;
  free_lazy_segment_tree(root->left_child);
  free_lazy_segment_tree(root->right_child);
  free(root);
}

int main(){
  lazy_segment_node * test = NULL;
  initialize(&test,1,10);
  printf("Lazy evaluation test\n");
  printf("test->lower_value: %i\n",test->lower_value);
  printf("test->upper_value: %i\n",test->upper_value);
  
  printf("\nNode not propagated\n");
  printf("test->left_child: %p\n",test->left_child);
  printf("test->right_child: %p\n",test->right_child);
  
  printf("\nNode propagated with access:\n");
  printf("access(test)->left_child: %p\n",access(test)->left_child);
  printf("access(test)->right_child: %p\n",access(test)->right_child);
  
  printf("\nNode propagated with access, but subchilds are not:\n");
  printf("access(test)->left_child->left_child: %p\n",access(test)->left_child->left_child);
  printf("access(test)->left_child->right_child: %p\n",access(test)->left_child->right_child);
  
  printf("\nCan use access on subchilds:\n");
  printf("access(test->left_child)->left_child: %p\n",access(test->left_child)->left_child);
  printf("access(test->left_child)->right_child: %p\n",access(test->left_child)->right_child);
  
  printf("\nIt's possible to chain:\n");
  printf("access(access(access(test)->right_child)->right_child)->lower_value: %i\n",access(access(access(test)->right_child)->right_child)->lower_value);
  printf("access(access(access(test)->right_child)->right_child)->upper_value: %i\n",access(access(access(test)->right_child)->right_child)->upper_value);
  
  free_lazy_segment_tree(test);
  
  return 0;
}

结果(ideone)

懒惰评估测试
测试->lower_value: 1
测试->upper_value: 10

节点未传播
测试->left_child: (nil)
测试->right_child: (nil)

通过访问传播的节点:
访问(测试)->left_child:0x948e020
访问(测试)->right_child:0x948e038

节点通过访问传播,但子子节点不是:
访问(测试)->left_child->left_child:(无)
访问(测试)->left_child->right_child:(无)

可以在子孩子上使用访问权限:
访问(测试->left_child)->left_child:0x948e050
访问(测试->left_child)->right_child:0x948e068

可以链接:
访问(访问(访问(测试)->right_child)->right_child)->lower_value:9
访问(访问(访问(测试)->right_child)->right_child)->upper_value:10
于 2012-08-04T13:08:52.960 回答
2

如果有人在不使用结构的情况下寻找更简单的惰性传播代码:

(代码是不言自明的)

/**
 * In this code we have a very large array called arr, and very large set of operations
 * Operation #1: Increment the elements within range [i, j] with value val
 * Operation #2: Get max element within range [i, j]
 * Build tree: build_tree(1, 0, N-1)
 * Update tree: update_tree(1, 0, N-1, i, j, value)
 * Query tree: query_tree(1, 0, N-1, i, j)
 */

#include<iostream>
#include<algorithm>
using namespace std;

#include<string.h>
#include<math.h> 

#define N 20
#define MAX (1+(1<<6)) // Why? :D
#define inf 0x7fffffff

int arr[N];
int tree[MAX];
int lazy[MAX];

/**
 * Build and init tree
 */
void build_tree(int node, int a, int b) {
    if(a > b) return; // Out of range

    if(a == b) { // Leaf node
            tree[node] = arr[a]; // Init value
        return;
    }

    build_tree(node*2, a, (a+b)/2); // Init left child
    build_tree(node*2+1, 1+(a+b)/2, b); // Init right child

    tree[node] = max(tree[node*2], tree[node*2+1]); // Init root value
}

/**
 * Increment elements within range [i, j] with value value
 */
void update_tree(int node, int a, int b, int i, int j, int value) {

    if(lazy[node] != 0) { // This node needs to be updated
        tree[node] += lazy[node]; // Update it

        if(a != b) {
            lazy[node*2] += lazy[node]; // Mark child as lazy
                lazy[node*2+1] += lazy[node]; // Mark child as lazy
        }

        lazy[node] = 0; // Reset it
    }

    if(a > b || a > j || b < i) // Current segment is not within range [i, j]
        return;

    if(a >= i && b <= j) { // Segment is fully within range
            tree[node] += value;

        if(a != b) { // Not leaf node
            lazy[node*2] += value;
            lazy[node*2+1] += value;
        }

            return;
    }

    update_tree(node*2, a, (a+b)/2, i, j, value); // Updating left child
    update_tree(1+node*2, 1+(a+b)/2, b, i, j, value); // Updating right child

    tree[node] = max(tree[node*2], tree[node*2+1]); // Updating root with max value
}

/**
 * Query tree to get max element value within range [i, j]
 */
int query_tree(int node, int a, int b, int i, int j) {

    if(a > b || a > j || b < i) return -inf; // Out of range

    if(lazy[node] != 0) { // This node needs to be updated
        tree[node] += lazy[node]; // Update it

        if(a != b) {
            lazy[node*2] += lazy[node]; // Mark child as lazy
            lazy[node*2+1] += lazy[node]; // Mark child as lazy
        }

        lazy[node] = 0; // Reset it
    }

    if(a >= i && b <= j) // Current segment is totally within range [i, j]
        return tree[node];

    int q1 = query_tree(node*2, a, (a+b)/2, i, j); // Query left child
    int q2 = query_tree(1+node*2, 1+(a+b)/2, b, i, j); // Query right child

    int res = max(q1, q2); // Return final result

    return res;
}

int main() {
    for(int i = 0; i < N; i++) arr[i] = 1;

    build_tree(1, 0, N-1);

    memset(lazy, 0, sizeof lazy);

    update_tree(1, 0, N-1, 0, 6, 5); // Increment range [0, 6] by 5
    update_tree(1, 0, N-1, 7, 10, 12); // Incremenet range [7, 10] by 12
    update_tree(1, 0, N-1, 10, N-1, 100); // Increment range [10, N-1] by 100

    cout << query_tree(1, 0, N-1, 0, N-1) << endl; // Get max element in range [0, N-1]
}

请参阅此链接以获取更多解释分段树和延迟传播

于 2015-06-03T14:28:18.623 回答
1

虽然我还没有成功解决,但我相信这个问题比我们想象的要容易得多。您可能甚至不需要使用 Segment Tree/Interval Tree... 事实上,我尝试了两种实现方式Segment Tree,一种使用树结构,另一种使用数组,两种解决方案都很快获得了 TLE。我觉得可以使用 Greedy 来完成,但我还不确定。无论如何,如果您想了解如何使用 Segment Tree 完成工作,请随时研究我的解决方案。注意max_tree[1]min_tree[1]对应于max/min

#include <iostream>
#include <iomanip>
#include <vector>
#include <string>
#include <algorithm>
#include <map>
#include <set>
#include <utility>
#include <stack>
#include <deque>
#include <queue>
#include <fstream>
#include <functional>
#include <numeric>

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <cassert>

#ifdef _WIN32 || _WIN64
#define getc_unlocked _fgetc_nolock
#endif

using namespace std;

const int MAX_RANGE = 1000000;
const int NIL = -(1 << 29);
int data[MAX_RANGE] = {0};
int min_tree[3 * MAX_RANGE + 1];
int max_tree[3 * MAX_RANGE + 1];
int added_to_interval[3 * MAX_RANGE + 1];

struct node {
    int max_value;
    int min_value;
    int added;
    node *left;
    node *right;
};

node* build_tree(int l, int r, int values[]) {
    node *root = new node;
    root->added = 0;
    if (l > r) {
        return NULL;
    }
    else if (l == r) {
        root->max_value = l + 1; // or values[l]
        root->min_value = l + 1; // or values[l]
        root->added = 0;
        root->left = NULL;
        root->right = NULL;
        return root;
    }
    else {  
        root->left = build_tree(l, (l + r) / 2, values);
        root->right = build_tree((l + r) / 2 + 1, r, values);
        root->max_value = max(root->left->max_value, root->right->max_value);
        root->min_value = min(root->left->min_value, root->right->min_value);
        root->added = 0;
        return root;
    }
}

node* build_tree(int l, int r) {
    node *root = new node;
    root->added = 0;
    if (l > r) {
        return NULL;
    }
    else if (l == r) {
        root->max_value = l + 1; // or values[l]
        root->min_value = l + 1; // or values[l]
        root->added = 0;
        root->left = NULL;
        root->right = NULL;
        return root;
    }
    else {  
        root->left = build_tree(l, (l + r) / 2);
        root->right = build_tree((l + r) / 2 + 1, r);
        root->max_value = max(root->left->max_value, root->right->max_value);
        root->min_value = min(root->left->min_value, root->right->min_value);
        root->added = 0;
        return root;
    }
}

void update_tree(node* root, int begin, int end, int i, int j, int amount) {
    // out of range
    if (begin > end || begin > j || end < i) {
        return;
    }
    // in update range (i, j)
    else if (i <= begin && end <= j) {
        root->max_value += amount;
        root->min_value += amount;
        root->added += amount;
    }
    else {
        if (root->left == NULL && root->right == NULL) {
            root->max_value = root->max_value + root->added;
            root->min_value = root->min_value + root->added;
        }
        else if (root->right != NULL && root->left == NULL) {
            update_tree(root->right, (begin + end) / 2 + 1, end, i, j, amount);
            root->max_value = root->right->max_value + root->added;
            root->min_value = root->right->min_value + root->added;
        }
        else if (root->left != NULL && root->right == NULL) {
            update_tree(root->left, begin, (begin + end) / 2, i, j, amount);
            root->max_value = root->left->max_value + root->added;
            root->min_value = root->left->min_value + root->added;
        }
        else {
            update_tree(root->right, (begin + end) / 2 + 1, end, i, j, amount);
            update_tree(root->left, begin, (begin + end) / 2, i, j, amount);
            root->max_value = max(root->left->max_value, root->right->max_value) + root->added;
            root->min_value = min(root->left->min_value, root->right->min_value) + root->added;
        }
    }
}

void print_tree(node* root) {
    if (root != NULL) {
        print_tree(root->left);
        cout << "\t(max, min): " << root->max_value << ", " << root->min_value << endl;
        print_tree(root->right);
    }
}

void clean_up(node*& root) {
    if (root != NULL) {
        clean_up(root->left);
        clean_up(root->right);
        delete root;
        root = NULL;
    }
}

void update_bruteforce(int x, int y, int z, int &smallest, int &largest, int data[], int n) {
    for (int i = x; i <= y; ++i) {
        data[i] += z;       
    }

    // update min/max
    smallest = data[0];
    largest = data[0];
    for (int i = 0; i < n; ++i) {
        if (data[i] < smallest) {
            smallest = data[i];
        }

        if (data[i] > largest) {
            largest = data[i];
        }
    }
}

void build_tree_as_array(int position, int left, int right) {
    if (left > right) {
        return;
    }
    else if (left == right) {
        max_tree[position] = left + 1;
        min_tree[position] = left + 1;
        added_to_interval[position] = 0;
        return;
    }
    else {
        build_tree_as_array(position * 2, left, (left + right) / 2);
        build_tree_as_array(position * 2 + 1, (left + right) / 2 + 1, right);
        max_tree[position] = max(max_tree[position * 2], max_tree[position * 2 + 1]);
        min_tree[position] = min(min_tree[position * 2], min_tree[position * 2 + 1]);
    }
}

void update_tree_as_array(int position, int b, int e, int i, int j, int value) {
    if (b > e || b > j || e < i) {
        return;
    }
    else if (i <= b && e <= j) {
        max_tree[position] += value;
        min_tree[position] += value;
        added_to_interval[position] += value;
        return;
    }
    else {
        int left_branch = 2 * position;
        int right_branch = 2 * position + 1;
        // make sure the array is ok
        if (left_branch >= 2 * MAX_RANGE + 1 || right_branch >= 2 * MAX_RANGE + 1) {
            max_tree[position] = max_tree[position] + added_to_interval[position];
            min_tree[position] = min_tree[position] + added_to_interval[position];
            return;
        }
        else if (max_tree[left_branch] == NIL && max_tree[right_branch] == NIL) {
            max_tree[position] = max_tree[position] + added_to_interval[position];
            min_tree[position] = min_tree[position] + added_to_interval[position];
            return;
        }
        else if (max_tree[left_branch] != NIL && max_tree[right_branch] == NIL) {
            update_tree_as_array(left_branch, b , (b + e) / 2 , i, j, value);
            max_tree[position] = max_tree[left_branch] + added_to_interval[position];
            min_tree[position] = min_tree[left_branch] + added_to_interval[position];
        }
        else if (max_tree[right_branch] != NIL && max_tree[left_branch] == NIL) {
            update_tree_as_array(right_branch, (b + e) / 2 + 1 , e , i, j, value);
            max_tree[position] = max_tree[right_branch] + added_to_interval[position];
            min_tree[position] = min_tree[right_branch] + added_to_interval[position];
        }
        else {
            update_tree_as_array(left_branch, b, (b + e) / 2 , i, j, value);
            update_tree_as_array(right_branch, (b + e) / 2 + 1 , e , i, j, value);
            max_tree[position] = max(max_tree[position * 2], max_tree[position * 2 + 1]) + added_to_interval[position]; 
            min_tree[position] = min(min_tree[position * 2], min_tree[position * 2 + 1]) + added_to_interval[position];
        }
    }
}

void show_data(int data[], int n) {
    cout << "[current data]\n";
    for (int i = 0; i < n; ++i) {
        cout << data[i] << ", ";
    }
    cout << endl;
}

inline void input(int* n) {
    char c = 0;
    while (c < 33) {
        c = getc_unlocked(stdin);
    }

    *n = 0;
    while (c > 33) {
        *n = (*n * 10) + c - '0';
        c = getc_unlocked(stdin);
    }
}

void handle_special_case(int m) {
    int type;
    int x;
    int y;
    int added_amount;
    for (int i = 0; i < m; ++i) {
        input(&type);
        input(&x);
        input(&y);
        input(&added_amount);
    }
    printf("0\n");
}

void find_largest_range_use_tree() {
    int n;
    int m;
    int type;
    int x;
    int y;
    int added_amount;

    input(&n);
    input(&m);

    if (n == 1) {
        handle_special_case(m);
        return;
    }

    node *root = build_tree(0, n - 1);
    for (int i = 0; i < m; ++i) {
        input(&type);
        input(&x);
        input(&y);
        input(&added_amount);
        if (type == 1) {    
            added_amount *= 1;
        }
        else {
            added_amount *= -1;
        }

        update_tree(root, 0, n - 1, x - 1, y - 1, added_amount);
    }

    printf("%d\n", root->max_value - root->min_value);
}

void find_largest_range_use_array() {
    int n;
    int m;
    int type;
    int x;
    int y;
    int added_amount;

    input(&n);
    input(&m);

    if (n == 1) {
        handle_special_case(m);
        return;
    }

    memset(min_tree, NIL, 3 * sizeof(int) * n + 1);
    memset(max_tree, NIL, 3 * sizeof(int) * n + 1);
    memset(added_to_interval, 0, 3 * sizeof(int) * n + 1);
    build_tree_as_array(1, 0, n - 1);

    for (int i = 0; i < m; ++i) {
        input(&type);
        input(&x);
        input(&y);
        input(&added_amount);
        if (type == 1) {    
            added_amount *= 1;
        }
        else {
            added_amount *= -1;
        }

        update_tree_as_array(1, 0, n - 1, x - 1, y - 1, added_amount);
    }

    printf("%d\n", max_tree[1] - min_tree[1]);
}

void update_slow(int x, int y, int value) {
    for (int i = x - 1; i < y; ++i) {
        data[i] += value;
    }
}

void find_largest_range_use_common_sense() {
    int n;
    int m;
    int type;
    int x;
    int y;
    int added_amount;

    input(&n);
    input(&m);

    if (n == 1) {
        handle_special_case(m);
        return;
    }

    memset(data, 0, sizeof(int) * n);
    for (int i = 0; i < m; ++i) {
        input(&type);
        input(&x);
        input(&y);
        input(&added_amount);

        if (type == 1) {    
            added_amount *= 1;
        }
        else {
            added_amount *= -1;
        }

        update_slow(x, y, added_amount);
    }

     // update min/max
    int smallest = data[0] + 1;
    int largest = data[0] + 1;
    for (int i = 1; i < n; ++i) {
        if (data[i] + i + 1 < smallest) {
            smallest = data[i] + i + 1;
        }

        if (data[i] + i + 1 > largest) {
            largest = data[i] + i + 1;
        }
    }

    printf("%d\n", largest - smallest); 
}

void inout_range_of_data() {
    int test_cases;
    input(&test_cases);

    while (test_cases--) {
        find_largest_range_use_common_sense();
    }
}

namespace unit_test {
    void test_build_tree() {
        for (int i = 0; i < MAX_RANGE; ++i) {
            data[i] = i + 1;
        }

        node *root = build_tree(0, MAX_RANGE - 1, data);
        print_tree(root);
    }

    void test_against_brute_force() {
          // arrange
        int number_of_operations = 100;
        for (int i = 0; i < MAX_RANGE; ++i) {
            data[i] = i + 1;
        }

        node *root = build_tree(0, MAX_RANGE - 1, data);

        // print_tree(root);
        // act
        int operation;
        int x;
        int y;
        int added_amount;
        int smallest = 1;
        int largest = MAX_RANGE;

        // assert
        while (number_of_operations--) {
            operation = rand() % 2; 
            x = 1 + rand() % MAX_RANGE;
            y = x + (rand() % (MAX_RANGE - x + 1));
            added_amount = 1 + rand() % MAX_RANGE;
            // cin >> operation >> x >> y >> added_amount;
            if (operation == 1) {
                added_amount *= 1;
            }
            else {
                added_amount *= -1;    
            }

            update_bruteforce(x - 1, y - 1, added_amount, smallest, largest, data, MAX_RANGE);
            update_tree(root, 0, MAX_RANGE - 1, x - 1, y - 1, added_amount);
            assert(largest == root->max_value);
            assert(smallest == root->min_value);
            for (int i = 0; i < MAX_RANGE; ++i) {
                cout << data[i] << ", ";
            }
            cout << endl << endl;
            cout << "correct:\n";
            cout << "\t largest = " << largest << endl;
            cout << "\t smallest = " << smallest << endl;
            cout << "testing:\n";
            cout << "\t largest = " << root->max_value << endl;
            cout << "\t smallest = " << root->min_value << endl;
            cout << "testing:\n";
            cout << "\n------------------------------------------------------------\n";
            cout << "final result: " << largest - smallest << endl;
            cin.get();
        }

        clean_up(root);
    }

    void test_automation() {
          // arrange
        int test_cases;
        int number_of_operations = 100;
        int n;


        test_cases = 10000;
        for (int i = 0; i < test_cases; ++i) {
            n = i + 1;

            int operation;
            int x;
            int y;
            int added_amount;
            int smallest = 1;
            int largest = n;


            // initialize data for brute-force
            for (int i = 0; i < n; ++i) {
                data[i] = i + 1;
            }

            // build tree   
            node *root = build_tree(0, n - 1, data);
            for (int i = 0; i < number_of_operations; ++i) {
                operation = rand() % 2; 
                x = 1 + rand() % n;
                y = x + (rand() % (n - x + 1));
                added_amount = 1 + rand() % n;

                if (operation == 1) {
                    added_amount *= 1;
                }
                else {
                    added_amount *= -1;    
                }

                update_bruteforce(x - 1, y - 1, added_amount, smallest, largest, data, n);
                update_tree(root, 0, n - 1, x - 1, y - 1, added_amount);
                assert(largest == root->max_value);
                assert(smallest == root->min_value);

                cout << endl << endl;
                cout << "For n = " << n << endl;
                cout << ", where data is : \n";
                for (int i = 0; i < n; ++i) {
                    cout << data[i] << ", ";
                }
                cout << endl;
                cout << " and query is " << x - 1 << ", " << y - 1 << ", " << added_amount << endl;
                cout << "correct:\n";
                cout << "\t largest = " << largest << endl;
                cout << "\t smallest = " << smallest << endl;
                cout << "testing:\n";
                cout << "\t largest = " << root->max_value << endl;
                cout << "\t smallest = " << root->min_value << endl;
                cout << "\n------------------------------------------------------------\n";
                cout << "final result: " << largest - smallest << endl;
            }

            clean_up(root);
        }

        cout << "DONE............\n";
    }

    void test_tree_as_array() {
          // arrange
        int test_cases;
        int number_of_operations = 100;
        int n;
        test_cases = 1000;
        for (int i = 0; i < test_cases; ++i) {
            n = MAX_RANGE;
            memset(min_tree, NIL, sizeof(min_tree));
            memset(max_tree, NIL, sizeof(max_tree));
            memset(added_to_interval, 0, sizeof(added_to_interval));
            memset(data, 0, sizeof(data));

            int operation;
            int x;
            int y;
            int added_amount;
            int smallest = 1;
            int largest = n;


            // initialize data for brute-force
            for (int i = 0; i < n; ++i) {
                data[i] = i + 1;
            }

            // build tree using array
            build_tree_as_array(1, 0, n - 1);
            for (int i = 0; i < number_of_operations; ++i) {
                operation = rand() % 2; 
                x = 1 + rand() % n;
                y = x + (rand() % (n - x + 1));
                added_amount = 1 + rand() % n;

                if (operation == 1) {
                    added_amount *= 1;
                }
                else {
                    added_amount *= -1;    
                }

                update_bruteforce(x - 1, y - 1, added_amount, smallest, largest, data, n);
                update_tree_as_array(1, 0, n - 1, x - 1, y - 1, added_amount);
                //assert(max_tree[1] == largest);
                //assert(min_tree[1] == smallest);

                cout << endl << endl;
                cout << "For n = " << n << endl;
                // show_data(data, n);
                cout << endl;
                cout << " and query is " << x - 1 << ", " << y - 1 << ", " << added_amount << endl;
                cout << "correct:\n";
                cout << "\t largest = " << largest << endl;
                cout << "\t smallest = " << smallest << endl;
                cout << "testing:\n";
                cout << "\t largest = " << max_tree[1] << endl;
                cout << "\t smallest = " << min_tree[1] << endl;
                cout << "\n------------------------------------------------------------\n";
                cout << "final result: " << largest - smallest << endl;
                cin.get();
            }
        }

        cout << "DONE............\n";
    }
}

int main() {
    // unit_test::test_against_brute_force();
    // unit_test::test_automation();    
    // unit_test::test_tree_as_array();
    inout_range_of_data();

    return 0;
}
于 2012-08-07T00:04:50.340 回答
0

使段树变得懒惰似乎没有任何优势。最终,您将需要查看每个单位坡度段的末端以获得最小值和最大值。因此,您不妨急切地扩展它们。

相反,只需修改标准段树定义。树中的每个区间都将存储一个额外的整数d,因此我们将编写[d; lo,hi]. 树有以下操作:

init(T, hi) // make a segment tree for the interval [0; 1,hi]
split(T, x, d)  // given there exists some interval [e; lo,hi],
                // in T where lo < x <= hi, replace this interval
                // with 2 new ones [e; lo,x-1] and [d; x,hi];
                // if x==lo, then replace with [e+d; lo,hi]

现在在初始化之后,我们使用两个拆分操作来处理添加d到子间隔:[lo,hi]

split(T, lo, d); split(T, hi+1, -d);

这里的想法是我们d在位置lo和右边添加所有内容,然后再次减去它hi+1

构建树后,从左到右遍历叶子让我们找到整数单位斜率段末端的值。这就是我们计算最小值和最大值所需的全部内容。更正式地说,如果树的叶间隔是[d_i; lo_i,hi_i]i=1..n按从左到右的顺序,那么我们要计算运行差D_i = sum{i=1..n} d_i,然后L_i = lo_i + D_iH_i = hi_i + D_i。在示例中,我们从[0; 1,10]d=-4 的 4 和 d=+4 的 7 开始,然后拆分,以获得[0; 1,2] [-4; 3,6] [4; 7,10]. 然后L = [1,-1,7]H = [2, 2, 10]。所以 min 是 -1 而 max 是 10。这是一个简单的例子,但它通常可以工作。

运行时间为 O( min (k log N, k^2) ),其中 N 是最大初始范围值(示例中为 10),k 是应用的操作数。如果您在拆分排序方面运气不佳,则会出现 k^2 情况。如果将操作列表随机化,则预期时间将为 O(k min (log N, log k))。

如果您有兴趣,我可以为您编写代码。但如果没有兴趣,我不会。

于 2012-08-11T05:38:01.663 回答
0

这是链接。它具有延迟传播的分段树的实现和解释。虽然代码是用 Java 编写的,但这并不重要,因为只有两个函数“更新”和“查询”,它们都是基于数组的。所以这些函数也可以在 C 和 C++ 中工作,无需任何修改。

http://isharemylearning.blogspot.in/2012/08/lazy-propagation-in-segment-tree.html

于 2012-08-13T08:16:31.300 回答