问问题
1003 次
3 回答
8
于 2012-08-01T18:43:32.780 回答
2
I had a go at it trying not to be clever and using simple recursive functions rather than stdlib magic. parse xs m ns
parses xs
by recording the (possibly empty) prefix already read in m
while keeping the list of numbers already parsed in the accumulator ns
.
If a parsing failure happens (non recognized character, two consecutive ,
, etc.) everything is thrown away and we return nothing
.
module parseList where
open import Data.Nat
open import Data.List
open import Data.Maybe
open import Data.Char
open import Data.String
isDigit : Char → Maybe ℕ
isDigit '0' = just 0
isDigit '1' = just 1
isDigit '2' = just 2
isDigit '3' = just 3
isDigit _ = nothing
attach : Maybe ℕ → ℕ → ℕ
attach nothing n = n
attach (just m) n = 10 * m + n
Quote : List Char → Maybe (List ℕ)
Quote xs = parse xs nothing []
where
parse : List Char → Maybe ℕ → List ℕ → Maybe (List ℕ)
parse [] nothing ns = just ns
parse [] (just n) ns = just (n ∷ ns)
parse (',' ∷ tl) (just n) ns = parse tl nothing (n ∷ ns)
parse (hd ∷ tl) m ns with isDigit hd
... | nothing = nothing
... | just n = parse tl (just (attach m n)) ns
stringListToℕ : String → Maybe (List ℕ)
stringListToℕ xs with Quote (toList xs)
... | nothing = nothing
... | just ns = just (reverse ns)
open import Relation.Binary.PropositionalEquality
test : stringListToℕ ("12,3") ≡ just (12 ∷ 3 ∷ [])
test = refl
于 2012-08-21T23:13:57.987 回答
1
Here is the Code from Vitus as a running example that uses the Agda Prelude
module Parse where
open import Prelude
-- Install Prelude
---- clone this git repo:
---- https://github.com/fkettelhoit/agda-prelude
-- Configure Prelude
--- press Meta/Alt and the letter X together
--- type "customize-group" (i.e. in the mini buffer)
--- type "agda2"
--- expand the Entry "Agda2 Include Dirs:"
--- add the directory
open import Data.Product using (uncurry′)
open import Data.Maybe using ()
open import Data.List using (sequence)
splitBy : ∀ {a} {A : Set a} → (A → Bool) → List A → List (List A)
splitBy {A = A} p = uncurry′ _∷_ ∘ foldr step ([] , [])
where
step : A → List A × List (List A) → List A × List (List A)
step x (cur , acc) with p x
... | true = x ∷ cur , acc
... | false = [] , cur ∷ acc
charsToℕ : List Char → Maybe ℕ
charsToℕ [] = nothing
charsToℕ list = stringToℕ (fromList list)
notComma : Char → Bool
notComma c = not (c == ',')
-- Finally:
charListToℕ : List Char → Maybe (List ℕ)
charListToℕ = Data.List.sequence Data.Maybe.monad ∘ map charsToℕ ∘ splitBy notComma
stringListToℕ : String → Maybe (List ℕ)
stringListToℕ = charListToℕ ∘ toList
-- Test
test1 : charListToℕ ('1' ∷ '2' ∷ ',' ∷ '3' ∷ []) ≡ just (12 ∷ 3 ∷ [])
test1 = refl
test2 : stringListToℕ "12,33" ≡ just (12 ∷ 33 ∷ [])
test2 = refl
test3 : stringListToℕ ",,," ≡ nothing
test3 = refl
test4 : stringListToℕ "abc,def" ≡ nothing
test4 = refl
于 2012-08-23T17:35:23.207 回答