2

我在用 Python 格式化一些代码时遇到困难:我的代码在这里:

keys = ['(Lag)=(\d+\.?\d*)','\t','(Autocorrelation Index): (\d+\.?\d*)',       '(Autocorrelation Index): (\d+\.?\d*)',     '(Semivariance): (\d+\.?\d*)']

import re
string1 = ''.join(open("dummy.txt").readlines())
found = []
for key in keys:
found.extend(re.findall(key, string1))
for result in found:
    print '%s  =  %s' % (result[0],result[1])
raw_input()

到目前为止,我得到了这个输出:

滞后 = 1

滞后 = 2

滞后 = 3

自相关指数 = #value

……

……

半方差 = #value

但我想要的输出是:

 Lag        AutoCorrelation Index   AutoCorrelation Index   Semivariance
  1              #value                   #value               #value
  2              #value                   #value               #value
  3              #value                   #value               #value

如果此输出可以在CSV文件或 txt 文件中实现,那就太好了!

我认为这是一种输出循环的方式,但我对循环不是很好。

我更新的代码(旧版本)

基于@mutzmatron 的回答

keys = ['(Lag)=(\d+\.?\d*)',
    '(Autocorrelation Index): (\d+\.?\d*)',
    '(Semivariance): (\d+\.?\d*)']

import re
string1 = open("dummy.txt").readlines().join()
found = []
for key in keys:
    found.extend(re.findall(key, string1))
raw_input()
for result in found:
    print '%s  =  %s' % (result[0], result[1])

raw_input()

还没有编译!我正在使用 IDLE python 2.6 ,不知道错误消息,因为我不知道提示符中的 pause 命令!

原始问题

我对python完全陌生并且有一个问题。我正在尝试处理一个大文本文件。这里只是其中的一个片段:

Band: WDRVI20((0.2*b4-b3)/((0.2*b4)+b3))
Basic Statistics:
  Min: -0.963805
  Max: 0.658219
  Mean: 0.094306
  Standard Deviation: 0.131797
Spatial Statistics, ***Lag=1***:
  Total Number of Observations (Pixels): 769995
  Number of Neighboring Pairs: 1538146
  Moran's I:
    ***Autocorrelation Index: 0.8482564597***
    Expected Value, if band is uncorrelated: -0.000001
    Standard Deviation of Expected Value (Normalized): 0.000806
    Standard Deviation of Expected Value (Randomized): 0.000806
    Z Significance Test (Normalized): 1052.029088
    Z Significance Test (Randomized): 1052.034915
  Geary's C:
    ***Autocorrelation Index: 0.1517324729***
    Expected Value, if band is uncorrelated: 1.000000
    Standard Deviation of Expected Value (Normalized): 0.000807
    Standard Deviation of Expected Value (Randomized): 0.000809
    Z Significance Test (Normalized): 1051.414163
    Z Significance Test (Randomized): 1048.752451
  ***Semivariance: 0.0026356529***
Spatial Statistics, Lag=2:
  Total Number of Observations (Pixels): 769995
  Number of Neighboring Pairs: 3068924
  Moran's I:
 Autocorrelation Index: 0.6230691635
   Expected Value, if band is uncorrelated: -0.000001
   Standard Deviation of Expected Value (Normalized): 0.000571
   Standard Deviation of Expected Value (Randomized): 0.000571
 Z Significance Test (Normalized): 1091.521976
 Z Significance Test (Randomized): 1091.528022
  Geary's C:
Autocorrelation Index: 0.3769372504
  Expected Value, if band is uncorrelated: 1.000000
  Standard Deviation of Expected Value (Normalized): 0.000574
  Standard Deviation of Expected Value (Randomized): 0.000587
 Z Significance Test (Normalized): 1085.700399
 Z Significance Test (Randomized): 1061.931158
Semivariance: 0.0065475488

我需要提取星 *** 值(例如:Autocorrelation IndexSemivariance值)之间的信息并对其进行处理,也许将其写入不同的文本文件或 excel 文件。我可以这样做吗?帮助将不胜感激。

4

2 回答 2

1

填充要查找的键(正则表达式)列表。例如,

keys = ['(Lag)=(\d+\.?\d*)',
        '(Autocorrelation Index): (\d+\.?\d*)',
        '(Semivariance): (\d+\.?\d*)']

然后使用正则表达式搜索这些,

import re
string1 = ''.join(open(FILE).readlines())
found = []
for key in keys:
    found.extend(re.findall(key, string1))

for result in found:
    print '%s  =  %s' % (result[0], result[1])

然后你应该有一个你想要的条目列表,你可以用它来做你接下来需要做的事情!

结果:

Lag  =  1
Autocorrelation Index  =  0.8482564597
Autocorrelation Index  =  0.1517324729
Semivariance  =  0.0026356529

CSV

要输出到 CSV,请使用csv模块;

import csv
outfile = open('fileout.csv', 'w')
wrt = csv.writer(outfile)
wrt.writerows(found)
outfile.close()
于 2012-07-31T15:19:21.317 回答
1

为了按部分格式化数据,可能最简单的方法是按如下方式处理段

keys =['(Lag)=(\d+\.?\d*)',
    '(Autocorrelation Index): (\d+\.?\d*)',
    '(Semivariance): (\d+\.?\d*)']

import re
string1 = ''.join(open("dummy.txt").readlines())

sections = string1.split('Spatial Statistics')

output = []
heads = []

for isec, sec in enumerate(sections):
    found = []
    output.append([])
    for key in keys:
        found.extend(re.findall(key, sec))
    for result in found:
        print '%s  =  %s' % (result[0],result[1])
        output[-1].append(result[1])
    if len(found) > 0 & len(heads) == 0:
        heads = [result[0] for result in found]    

fout = open('output.csv', 'w')
wrt = csv.writer(fout)
wrt.writerow(heads)
wrt.writerows(outputs)
fout.close()
于 2012-07-31T21:17:45.523 回答