(1)如何修改decorator,如果它取的f对象是一个类的实例方法,那么它返回的executor也是那个类对象的实例方法(这样这个业务就没法pickle了不会发生,因为我可以腌制那些实例方法)?
>>> myfoo.parSquare
<bound method Foo.executor of <__main__.Foo object at 0x101332510>>
如您所见, parSquare 实际上是已成为实例方法的执行程序,这不足为奇,因为装饰器是某种函数包装器...
如何制作功能装饰器链?可能对装饰器有最好的描述。
(2) 创建额外的 _pickle_function 和 _unpickle_function 方法更好吗?
你不需要 python 已经支持它们,事实上这copy_reg.pickle(types.FunctionType, _pickle_method, _unpickle_method)
似乎有点奇怪,因为你使用相同的算法来腌制这两种类型。
现在更大的问题是,为什么我们得到PicklingError: Can't pickle <type 'function'>: attribute lookup __builtin__.function failed
的错误本身看起来有些模糊,但看起来它无法查找我们的函数?
我认为发生的事情是装饰器正在用您的情况内部定义的函数覆盖该函数,parSquare
但executor
它executor
是一个内部函数,parallel
因此它是不可导入的,因此查找似乎失败了,这只是一种预感。
让我们尝试一个更简单的例子。
>>> def parallel(function):
... def apply(values):
... from multiprocessing import Pool
... pool = Pool(4)
... result = pool.map(function, values)
... pool.close()
... pool.join()
... return result
... return apply
...
>>> @parallel
... def square(value):
... return value**2
...
>>>
>>> square([1,2,3,4])
Exception in thread Thread-1:
Traceback (most recent call last):
File "/System/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/threading.py", line 522, in __bootstrap_inner
self.run()
File "/System/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/threading.py", line 477, in run
self.__target(*self.__args, **self.__kwargs)
File "/System/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/multiprocessing/pool.py", line 225, in _handle_tasks
put(task)
PicklingError: Can't pickle <type 'function'>: attribute lookup __builtin__.function failed
我们得到的错误几乎相同。
注意上面的代码等价于:
def parallel(function):
def apply(values):
from multiprocessing import Pool
pool = Pool(4)
result = pool.map(function, values)
pool.close()
pool.join()
return result
return apply
def square(value):
return value**2
square = parallel(square)
这会产生相同的错误,还请注意,如果我们不重命名函数。
>>> def parallel(function):
... def apply(values):
... from multiprocessing import Pool
... pool = Pool(4)
... result = pool.map(function, values)
... pool.close()
... pool.join()
... return result
... return apply
...
>>> def _square(value):
... return value**2
...
>>> square = parallel(_square)
>>> square([1,2,3,4])
[1, 4, 9, 16]
>>>
它工作得很好,我一直在寻找一种方法来控制装饰器使用名称的方式,但无济于事,我仍然想将它们与多处理一起使用,所以我想出了一个有点丑陋的解决方法:
>>> def parallel(function):
... def temp(_):
... def apply(values):
... from multiprocessing import Pool
... pool = Pool(4)
... result = pool.map(function, values)
... pool.close()
... pool.join()
... return result
... return apply
... return temp
...
>>> def _square(value):
... return value*value
...
>>> @parallel(_square)
... def square(values):
... pass
...
>>> square([1,2,3,4])
[1, 4, 9, 16]
>>>
所以基本上我将真正的函数传递给了装饰器,然后我使用了第二个函数来处理这些值,你可以看到它工作得很好。
我稍微修改了您的初始代码以更好地处理装饰器,尽管它并不完美。
import types, copy_reg, multiprocessing as mp
def parallel(f):
def executor(*args):
_pool = mp.Pool(2)
func = getattr(args[0], f.__name__) # This will get the actual method function so we can use our own pickling procedure
_result = _pool.map(func, args[1])
_pool.close()
_pool.join()
return _result
return executor
def _pickle_method(method):
func_name = method.im_func.__name__
obj = method.im_self
cls = method.im_class
cls_name = ''
if func_name.startswith('__') and not func_name.endswith('__'):
cls_name = cls.__name__.lstrip('_')
if cls_name:
func_name = '_' + cls_name + func_name
return _unpickle_method, (func_name, obj, cls)
def _unpickle_method(func_name, obj, cls):
func = None
for cls in cls.mro():
if func_name in cls.__dict__:
func = cls.__dict__[func_name] # This will fail with the decorator, since parSquare is being wrapped around as executor
break
else:
for attr in dir(cls):
prop = getattr(cls, attr)
if hasattr(prop, '__call__') and prop.__name__ == func_name:
func = cls.__dict__[attr]
break
if func == None:
raise KeyError("Couldn't find function %s withing %s" % (str(func_name), str(cls)))
return func.__get__(obj, cls)
copy_reg.pickle(types.MethodType, _pickle_method, _unpickle_method)
class Foo(object):
def __init__(self, args):
self.my_args = args
def squareArg(self, arg):
return arg**2
def par_squareArg(self):
p = mp.Pool(2) # Replace 2 with the number of processors.
q = p.map(self.squareArg, self.my_args)
p.close()
p.join()
return q
@parallel
def parSquare(self, num):
return self.squareArg(num)
if __name__ == "__main__":
myfoo = Foo([1,2,3,4])
print myfoo.par_squareArg()
print myfoo.parSquare(myfoo.my_args)
基本上这仍然失败,AssertionError: daemonic processes are not allowed to have children
因为子进程试图调用函数,所以给我们,请记住,子进程并没有真正复制代码只是名称......
一种解决方法类似于我之前提到的一种:
import types, copy_reg, multiprocessing as mp
def parallel(f):
def temp(_):
def executor(*args):
_pool = mp.Pool(2)
func = getattr(args[0], f.__name__) # This will get the actual method function so we can use our own pickling procedure
_result = _pool.map(func, args[1])
_pool.close()
_pool.join()
return _result
return executor
return temp
def _pickle_method(method):
func_name = method.im_func.__name__
obj = method.im_self
cls = method.im_class
cls_name = ''
if func_name.startswith('__') and not func_name.endswith('__'):
cls_name = cls.__name__.lstrip('_')
if cls_name:
func_name = '_' + cls_name + func_name
return _unpickle_method, (func_name, obj, cls)
def _unpickle_method(func_name, obj, cls):
func = None
for cls in cls.mro():
if func_name in cls.__dict__:
func = cls.__dict__[func_name] # This will fail with the decorator, since parSquare is being wrapped around as executor
break
else:
for attr in dir(cls):
prop = getattr(cls, attr)
if hasattr(prop, '__call__') and prop.__name__ == func_name:
func = cls.__dict__[attr]
break
if func == None:
raise KeyError("Couldn't find function %s withing %s" % (str(func_name), str(cls)))
return func.__get__(obj, cls)
copy_reg.pickle(types.MethodType, _pickle_method, _unpickle_method)
class Foo(object):
def __init__(self, args):
self.my_args = args
def squareArg(self, arg):
return arg**2
def par_squareArg(self):
p = mp.Pool(2) # Replace 2 with the number of processors.
q = p.map(self.squareArg, self.my_args)
p.close()
p.join()
return q
def _parSquare(self, num):
return self.squareArg(num)
@parallel(_parSquare)
def parSquare(self, num):
pass
if __name__ == "__main__":
myfoo = Foo([1,2,3,4])
print myfoo.par_squareArg()
print myfoo.parSquare(myfoo.my_args)
[1, 4, 9, 16]
[1, 4, 9, 16]
最后一件事,多线程时要非常小心,这取决于您如何分割数据,实际上多线程的时间可能比单线程慢,这主要是由于来回复制值以及创建和销毁子进程的开销。
始终对单/多线程进行基准测试,并在可能的情况下正确分割您的数据。
一个例子:
import numpy
import time
from multiprocessing import Pool
def square(value):
return value*value
if __name__ == '__main__':
pool = Pool(5)
values = range(1000000)
start = time.time()
_ = pool.map(square, values)
pool.close()
pool.join()
end = time.time()
print "multithreaded time %f" % (end - start)
start = time.time()
_ = map(square, values)
end = time.time()
print "single threaded time %f" % (end - start)
start = time.time()
_ = numpy.asarray(values)**2
end = time.time()
print "numpy time %f" % (end - start)
v = numpy.asarray(values)
start = time.time()
_ = v**2
end = time.time()
print "numpy without pre-initialization %f" % (end - start)
给我们:
multithreaded time 0.484441
single threaded time 0.196421
numpy time 0.184163
numpy without pre-initialization 0.004490