5

我只是想对使用多个映射器和减速器有更好的了解。我想用一个简单的 hadoop mapreduce 字数统计作业来试试这个。我想为这个字数统计作业运行两个映射器和两个减速器。我需要吗在配置文件上手动配置,或者仅对 WordCount.java 文件进行更改就足够了。

我在单个节点上运行这个作业。我运行这个作业是

$ hadoop jar job.jar 输入输出

我已经开始了

$ hadoop namenode -format
$ hadoop namenode

$ hadoop datanode

sbin$ ./yarn-daemon.sh 启动资源管理器 sbin$ ./yarn-daemon.sh 启动资源管理器

我正在运行 hadoop-2.0.0-cdh4.0.0

我的 WordCount.java 文件是

package org.apache.hadoop.examples;

import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.IntWritable;
import org.rg.apache.hadoop.fs.Path;
import oapache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

public class WordCount {
private static final Log LOG = LogFactory.getLog(WordCount.class);

  public static class TokenizerMapper
       extends Mapper<Object, Text, Text, IntWritable>{

    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();

    public void map(Object key, Text value, Context context
                    ) throws IOException, InterruptedException {
      StringTokenizer itr = new StringTokenizer(value.toString());
      while (itr.hasMoreTokens()) {
        word.set(itr.nextToken());
        context.write(word, one);
      }
    }
  }

  public static class IntSumReducer
       extends Reducer<Text,IntWritable,Text,IntWritable> {
    private IntWritable result = new IntWritable();

    public void reduce(Text key, Iterable<IntWritable> values,
                       Context context
                       ) throws IOException, InterruptedException {
      int sum = 0;
      //printKeyAndValues(key, values);

      for (IntWritable val : values) {
        sum += val.get();
      LOG.info("val = " + val.get());
      }
      LOG.info("sum = " + sum + " key = " + key);
      result.set(sum);
      context.write(key, result);
      //System.err.println(String.format("[reduce] word: (%s), count: (%d)", key, result.get()));
    }


  // a little method to print debug output
    private void printKeyAndValues(Text key, Iterable<IntWritable> values)
    {
      StringBuilder sb = new StringBuilder();
      for (IntWritable val : values)
      {
        sb.append(val.get() + ", ");
      }
      System.err.println(String.format("[reduce] key: (%s), value: (%s)", key, sb.toString()));
    }
  }

  public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
    if (otherArgs.length != 2) {
      System.err.println("Usage: wordcount <in> <out>");
      System.exit(2);
    }
    Job job = new Job(conf, "word count");
    job.setJarByClass(WordCount.class);
    job.setMapperClass(TokenizerMapper.class);
    job.setCombinerClass(IntSumReducer.class);
    job.setReducerClass(IntSumReducer.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
    FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));

    System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

你们中的任何人现在可以帮我为这个字数统计工作运行两个映射器和减速器吗?

4

2 回答 2

5

Gladnick:如果您打算使用默认的TextInputFormat,那么在输入文件的数量上至少会有尽可能多的映射器(或者更多,取决于文件大小)。因此,只需将 2 个文件放入您的输入目录,这样您就可以运行 2 个映射器。(建议此解决方案,因为您计划将其作为测试用例运行)。

现在您已经要求 2 个减速器,您需要做的就是在提交作业之前在您的 main 中使用 job.setNumReduceTasks(2)

之后,只需准备一个应用程序的 jar 并在hadoop 伪集群中运行它。

如果你需要指定哪个词去哪个reducer,你可以在Partitioner类中指定。

            Configuration configuration = new Configuration();
        // create a configuration object that provides access to various
        // configuration parameters
        Job job = new Job(configuration, "Wordcount-Vowels & Consonants");
        // create the job object and set job name as Wordcount-Vowels &
        // Consonants
        job.setJarByClass(WordCount.class);
        // set the main class
        job.setNumReduceTasks(2);
        // set the number of reduce tasks required
        job.setMapperClass(WordCountMapper.class);
        // set the map class for the job
        job.setCombinerClass(WordCountCombiner.class);
        // set the combiner class for the job
        job.setPartitionerClass(VowelConsonantPartitioner.class);
        // set the partitioner class for the job
        job.setReducerClass(WordCountReducer.class);
        // set the reduce class for the job
        job.setOutputKeyClass(Text.class);
        // set the output type of key (the word) expected from the job, Text
        // analogous to String
        job.setOutputValueClass(IntWritable.class);
        // set the output type of value (the count) expected from the job,
        // IntWritable analogous to int
        FileInputFormat.addInputPath(job, new Path(args[0]));
        // set the input directory for fetching the input files
        FileOutputFormat.setOutputPath(job, new Path(args[1])); 

这应该是您的主程序的结构。如果需要,您可以包括组合器和分区器。

于 2012-07-30T09:13:52.697 回答
2

对于映射器集

mapred.max.split.size 

到文件大小的一半。

对于减速器,将它们显式设置为 2

 mapred.reduce.tasks=2
于 2012-07-30T10:21:40.327 回答