这是使用arrayfun
和的解决方案cellfun
zarray = [1 2 3 4 5 6 7 8 9 10];
lengths = [1 3 2 1 3];
% Generate the indexes for the elements contained within each length specified
% subset. idx would be {[1], [4, 3, 2], [6, 5], [7], [10, 9, 8]} in this case
idx = arrayfun(@(a,b) a-(0:b-1), cumsum(lengths), lengths,'UniformOutput',false);
means = cellfun( @(a) mean(zarray(a)), idx);
您想要的输出结果:
means =
1.0000 3.0000 5.5000 7.0000 9.0000
在@tmpearce 评论之后,我对上述解决方案进行了快速的时间性能比较,从中我创建了一个名为subsetMeans1
function means = subsetMeans1( zarray, lengths)
% Generate the indexes for the elements contained within each length specified
% subset. idx would be {[1], [4, 3, 2], [6, 5], [7], [10, 9, 8]} in this case
idx = arrayfun(@(a,b) a-(0:b-1), cumsum(lengths), lengths,'UniformOutput',false);
means = cellfun( @(a) mean(zarray(a)), idx);
和一个简单的 for 循环替代方法 function subsetMeans2
。
function means = subsetMeans2( zarray, lengths)
% Method based on single loop
idx = 1;
N = length(lengths);
means = zeros( 1, N);
for i = 1:N
means(i) = mean( zarray(idx+(0:lengths(i)-1)) );
idx = idx+lengths(i);
end
使用基于TIMEIT的下一个测试脚本,它允许检查不同输入向量上的元素数量和每个子集的元素大小的性能:
% Generate some data for the performance test
% Total of elements on the vector to test
nVec = 100000;
% Max of elements per subset
nSubset = 5;
% Data generation aux variables
lenghtsGen = randi( nSubset, 1, nVec);
accumLen = cumsum(lenghtsGen);
maxIdx = find( accumLen < nVec, 1, 'last' );
% % Original test data
% zarray = [1 2 3 4 5 6 7 8 9 10];
% lengths = [1 3 2 1 3];
% Vector to test
zarray = 1:nVec;
lengths = [ lenghtsGen(1:maxIdx) nVec-accumLen(maxIdx)] ;
% Double check that nVec is will be the max index
assert ( sum(lengths) == nVec)
t1(1) = timeit(@() subsetMeans1( zarray, lengths));
t1(2) = timeit(@() subsetMeans2( zarray, lengths));
fprintf('Time spent subsetMeans1: %f\n',t1(1));
fprintf('Time spent subsetMeans2: %f\n',t1(2));
arrayfun
事实证明,没有和更快的非矢量化版本cellfun
可能是由于这些函数的额外开销
Time spent subsetMeans1: 2.082457
Time spent subsetMeans2: 1.278473