我有一些我想“放入气泡中”的图像。气泡在屏幕周围漂浮,这些图像被困在其中。
最好的方法是将内部图像与气泡图像结合起来,并以某种方式扭曲内部图像,使其看起来像是反映在气泡内部。
有谁知道如何在不使用纹理和网格的情况下实现这种效果?也许有人记得一个旧项目或做过类似事情的事情?
这是我的意思的一个例子:
我有一些我想“放入气泡中”的图像。气泡在屏幕周围漂浮,这些图像被困在其中。
最好的方法是将内部图像与气泡图像结合起来,并以某种方式扭曲内部图像,使其看起来像是反映在气泡内部。
有谁知道如何在不使用纹理和网格的情况下实现这种效果?也许有人记得一个旧项目或做过类似事情的事情?
这是我的意思的一个例子:
您可以使用我的开源GPUImage框架中的 GPUImageSphereRefractionFilter 执行此操作:
我在this answer to an question about an similar effects on Android中详细描述了它是如何工作的。基本上,我使用片段着色器来折射穿过假想球体的光,然后使用它来查找包含源图像的纹理。使用简单的高斯模糊来模糊背景。
如果您想获得您显示的图像的确切外观,您可能需要调整此片段着色器以向球体添加一些掠角颜色,但这应该让您相当接近。
为了好玩,我决定尝试更接近地复制上面的玻璃球。我在球体上添加了掠射角光照和镜面光照反射,以及不反转折射纹理坐标,导致了以下结果:
我为这个较新的版本使用了以下片段着色器:
varying highp vec2 textureCoordinate;
uniform sampler2D inputImageTexture;
uniform highp vec2 center;
uniform highp float radius;
uniform highp float aspectRatio;
uniform highp float refractiveIndex;
// uniform vec3 lightPosition;
const highp vec3 lightPosition = vec3(-0.5, 0.5, 1.0);
const highp vec3 ambientLightPosition = vec3(0.0, 0.0, 1.0);
void main()
{
highp vec2 textureCoordinateToUse = vec2(textureCoordinate.x, (textureCoordinate.y * aspectRatio + 0.5 - 0.5 * aspectRatio));
highp float distanceFromCenter = distance(center, textureCoordinateToUse);
lowp float checkForPresenceWithinSphere = step(distanceFromCenter, radius);
distanceFromCenter = distanceFromCenter / radius;
highp float normalizedDepth = radius * sqrt(1.0 - distanceFromCenter * distanceFromCenter);
highp vec3 sphereNormal = normalize(vec3(textureCoordinateToUse - center, normalizedDepth));
highp vec3 refractedVector = 2.0 * refract(vec3(0.0, 0.0, -1.0), sphereNormal, refractiveIndex);
refractedVector.xy = -refractedVector.xy;
highp vec3 finalSphereColor = texture2D(inputImageTexture, (refractedVector.xy + 1.0) * 0.5).rgb;
// Grazing angle lighting
highp float lightingIntensity = 2.5 * (1.0 - pow(clamp(dot(ambientLightPosition, sphereNormal), 0.0, 1.0), 0.25));
finalSphereColor += lightingIntensity;
// Specular lighting
lightingIntensity = clamp(dot(normalize(lightPosition), sphereNormal), 0.0, 1.0);
lightingIntensity = pow(lightingIntensity, 15.0);
finalSphereColor += vec3(0.8, 0.8, 0.8) * lightingIntensity;
gl_FragColor = vec4(finalSphereColor, 1.0) * checkForPresenceWithinSphere;
}
这个过滤器可以使用 GPUImageGlassSphereFilter 运行。
作为记录,我最终使用了@BradLarson 建议的 GPUImage,但我必须编写一个自定义过滤器,如下所示。该滤镜采用“内部”图像和气泡纹理并将两者混合,同时还执行折射计算但不反转图像坐标。效果:
。H
@interface GPUImageBubbleFilter : GPUImageTwoInputFilter
@property (readwrite, nonatomic) CGFloat refractiveIndex;
@property (readwrite, nonatomic) CGFloat radius;
@end
.m
#import "GPUImageBubbleFilter.h"
NSString *const kGPUImageBubbleShaderString = SHADER_STRING
(
varying highp vec2 textureCoordinate;
varying highp vec2 textureCoordinate2;
uniform sampler2D inputImageTexture;
uniform sampler2D inputImageTexture2;
uniform highp vec2 center;
uniform highp float radius;
uniform highp float aspectRatio;
uniform highp float refractiveIndex;
void main()
{
highp vec2 textureCoordinateToUse = vec2(textureCoordinate.x, (textureCoordinate.y * aspectRatio + 0.5 - 0.5 * aspectRatio));
highp float distanceFromCenter = distance(center, textureCoordinateToUse);
lowp float checkForPresenceWithinSphere = step(distanceFromCenter, radius);
distanceFromCenter = distanceFromCenter / radius;
highp float normalizedDepth = radius * sqrt(1.0 - distanceFromCenter * distanceFromCenter);
highp vec3 sphereNormal = normalize(vec3(textureCoordinateToUse - center, normalizedDepth));
highp vec3 refractedVector = refract(vec3(0.0, 0.0, -1.0), sphereNormal, refractiveIndex);
lowp vec4 textureColor = texture2D(inputImageTexture, (refractedVector.xy + 1.0) * 0.5) * checkForPresenceWithinSphere;
lowp vec4 textureColor2 = texture2D(inputImageTexture2, textureCoordinate2) * checkForPresenceWithinSphere;
gl_FragColor = mix(textureColor, textureColor2, textureColor2.a);
}
);
@interface GPUImageBubbleFilter () {
GLint radiusUniform, centerUniform, aspectRatioUniform, refractiveIndexUniform;
}
@property (readwrite, nonatomic) CGFloat aspectRatio;
@end
@implementation GPUImageBubbleFilter
@synthesize radius = _radius, refractiveIndex = _refractiveIndex, aspectRatio = _aspectRatio;
- (id) init {
self = [super initWithFragmentShaderFromString: kGPUImageBubbleShaderString];
if( self ) {
radiusUniform = [filterProgram uniformIndex: @"radius"];
aspectRatioUniform = [filterProgram uniformIndex: @"aspectRatio"];
centerUniform = [filterProgram uniformIndex: @"center"];
refractiveIndexUniform = [filterProgram uniformIndex: @"refractiveIndex"];
self.radius = 0.5;
self.refractiveIndex = 0.5;
self.aspectRatio = 1.0;
GLfloat center[2] = {0.5, 0.5};
[GPUImageOpenGLESContext useImageProcessingContext];
[filterProgram use];
glUniform2fv(centerUniform, 1, center);
[self setBackgroundColorRed: 0 green: 0 blue: 0 alpha: 0];
}
return self;
}
#pragma mark - Accessors
- (void) setRadius:(CGFloat)radius {
_radius = radius;
[GPUImageOpenGLESContext useImageProcessingContext];
[filterProgram use];
glUniform1f(radiusUniform, _radius);
}
- (void) setAspectRatio:(CGFloat)aspectRatio {
_aspectRatio = aspectRatio;
[GPUImageOpenGLESContext useImageProcessingContext];
[filterProgram use];
glUniform1f(aspectRatioUniform, _aspectRatio);
}
- (void)setRefractiveIndex:(CGFloat)newValue;
{
_refractiveIndex = newValue;
[GPUImageOpenGLESContext useImageProcessingContext];
[filterProgram use];
glUniform1f(refractiveIndexUniform, _refractiveIndex);
}