只是为了好玩,因为它真的很容易,我写了一个小程序来生成Grafting numbers,但由于浮点精度问题,它没有找到一些更大的例子。
def isGrafting(a):
for i in xrange(1, int(ceil(log10(a))) + 2):
if a == floor((sqrt(a) * 10**(i-1)) % 10**int(ceil(log10(a)))):
return 1
a = 0
while(1):
if (isGrafting(a)):
print "%d %.15f" % (a, sqrt(a))
a += 1
此代码至少缺少一个已知的嫁接编号。9999999998 => 99999.99998999999999949999999994999999999374999999912...
乘以 后似乎会降低额外的精度10**5
。
>>> a = 9999999998
>>> sqrt(a)
99999.99999
>>> a == floor((sqrt(a) * 10**(5)) % 10**int(ceil(log10(a))))
False
>>> floor((sqrt(a) * 10**(5)) % 10**int(ceil(log10(a))))
9999999999.0
>>> print "%.15f" % sqrt(a)
99999.999989999996615
>>> print "%.15f" % (sqrt(a) * 10**5)
9999999999.000000000000000
所以我写了一个简短的 C++ 程序,看看是我的 CPU 以某种方式截断了浮点数还是 python。
#include <cstdio>
#include <cmath>
#include <stdint.h>
int main()
{
uint64_t a = 9999999998;
printf("%ld %.15f %.15f %.15f %.15f\n", a, sqrt((double)a), sqrt((double)a)*1e4, sqrt((double)a)*1e5, sqrt((double)a)*1e6);
a = 999999999998;
printf("%ld %.15f %.15f %.15f %.15f\n", a, sqrt((double)a), sqrt((double)a)*1e5, sqrt((double)a)*1e6, sqrt((double)a)*1e7);
a = 99999999999998;
printf("%ld %.15f %.15f %.15f %.15f\n", a, sqrt((double)a), sqrt((double)a)*1e6, sqrt((double)a)*1e7, sqrt((double)a)*1e8);
return 0;
}
哪个输出:
9999999998 99999.999989999996615 999999999.899999976158142 9999999999.000000000000000 99999999990.000000000000000
999999999998 999999.999998999992386 99999999999.899993896484375 999999999999.000000000000000 9999999999990.000000000000000
99999999999998 9999999.999999899417162 9999999999999.900390625000000 99999999999999.000000000000000 999999999999990.000000000000000
所以看起来我正在努力克服浮点精度的限制,并且 CPU 正在切断剩余的位,因为它认为剩余的差异是浮点错误。有没有办法在 Python 下解决这个问题?还是我需要转移到 C 并使用 GMP 之类的?