我正在研究 R 中的两阶段阈值分位数回归模型,我的目标是分两个阶段估计简化形式方程的阈值(称为 rhohat)和结构方程的阈值(称为 qhat) . 在第一阶段,我通过分位数回归估计 rhohat 并获得拟合值。我使用这些拟合值来估计第二阶段的 qhat。代码如下(感谢 Bruce Hansen 教授,我修改了他的代码):
#************************************************************#
#Quantile Regression.
qr.regress <- function(y,x){
beta <- c(rq(y~x,tau)$coefficients[1],rq(y~x,tau)$coefficients[2])
beta
}
#Threshold Estimation with one independent variable + constant.
joint_thresh <- function(y,x,q){
n=nrow(y)
k=ncol(x)
e=y-x%*%rq(y~x,tau)$coefficients[2]-rq(y~x,tau)$coefficients[1]
s0 <- det(t(e)%*%e)
n1 <- round(.05*n)+k
n2 <- round(.95*n)-k
qs <- sort(q)
qs <- qs[n1:n2]
qs <- as.matrix(unique(qs))
qn <- nrow(qs)
sn <- matrix(0,qn,1)
for (r in 1:qn){
d <- (q<=qs[r])
xx <- (x)*(d%*%matrix(1,1,k))
xx <- xx-x%*%rq(xx~x,tau)$coefficients[2]-rq(xx~x,tau)$coefficients[1]
ex <- e-xx%*%rq(e~xx,tau)$coefficients[2]-rq(e~xx,tau)$coefficients[1]
exw <- ex*(tau-(ex<0))
sn[r] <- sum(exw)
}
r <- which.min(sn)
smin <- sn[r]
qhat <- qs[r]
d <- (q<=qhat)
x1 <- x*(d%*%matrix(1,1,k))
x2 <- x*((1-d)%*%matrix(1,1,k))
beta1 <- rq(y~x1,tau)$coefficients[2]
beta2 <- rq(y~x2,tau)$coefficients[2]
yhat <- x1%*%beta1+x2%*%beta2
list(yhat=yhat,qhat=qhat)
}
#Threshold Estimation with two independent variables + constant.
joint_thresh_2 <- function(y,x,q){
n <- nrow(y)
k <- ncol(x)
e=y-x[,1]%*%t(rq(y~x-1,tau)$coefficients[3])-x[,2]%*%t(rq(y~x-1,tau)$coefficients[2])-x[,3]%*%t(rq(y~x-1,tau)$coefficients[3])
s0 <- det(t(e)%*%e)
n1 <- round(.05*n)+k
n2 <- round(.95*n)-k
qs <- sort(q)
qs <- qs[n1:n2]
qs <- as.matrix(unique(qs))
qn <- nrow(qs)
sn <- matrix(0,qn,1)
for (r in 1:qn){
d <- (q<=qs[r])
xx <- (x)*(d%*%matrix(1,1,k))
xx <- xx[,1]-x%*%rq(x[,1]~xx-1,tau)$coefficients
ex <- e-xx%*%qr.regress(e,xx)[2]-xx%*%qr.regress(e,xx)[1]
exw <- ex*(tau-(ex<0))
sn[r] <- sum(exw)
}
r <- which.min(sn)
smin <- sn[r]
qhat <- qs[r]
d <- (q<=qhat)
x1 <- x*(d%*%matrix(1,1,k))
x2 <- x*((1-d)%*%matrix(1,1,k))
beta1 <- rq(y~x1-1,tau)$coefficients[1]
beta2 <- rq(y~x2-1,tau)$coefficients[3]
c1 <- rq(y~x1-1,tau)$coefficients[2]
c2 <- rq(y~x2-1,tau)$coefficients[2]
yhat <- x1[,1]%*%t(beta1)+x2[,3]%*%t(beta2)+c1+c2
list(yhat=yhat,qhat=qhat)
}
#Threshold Reduced-form eqn.
tau=0.50
stqr_thresh_loop <- function(n,reps){
qhat=as.vector(reps)
rhohat=as.vector(reps)
kx <- 1
sig <- matrix(c(1,0.5,0.5,1),2,2)
x<- matrix(rnorm(n*kx),n,kx)
q <- matrix(rnorm(n),n,1)
z2 <- cbind(matrix(1,n,1),q)
for(i in 1:reps){
e <- matrix(rnorm(n*2,quantile(rnorm(n),tau),1),n,2)%*%chol(sig)
z1=0.5+0.5*x*(q<=0)+1*x*(q>0)+e[,2]
y=0.5+1*z1*(q<=1)+1.5*z1*(q>1)+1*z2[,2]+e[,1]
out1 <- joint_thresh(y=z1,x=x,q=q)
z1hat<- out1$yhat
rhohat[i] <- out1$qhat
zhat <- cbind(z1hat,z2)
out2 <- joint_thresh_2(y=y,x=zhat,q=q)
qhat[i] <- out2$qhat
} #Close for loop.
list(rhohat=rhohat,qhat=qhat)
}
#************************************************************#
您可以轻松地自己运行它。问题是当我写作时,
stqr_thresh_loop(n=200,reps=500)
代码崩溃了,从来没有给我任何结果。我究竟做错了什么?非常感谢!!