90

假设我有一个课程,例如

class c { 
    // ...
    void *print(void *){ cout << "Hello"; }
}

然后我有一个 c 向量

vector<c> classes; pthread_t t1;
classes.push_back(c());
classes.push_back(c());

现在,我想创建一个线程c.print();

以下是给我以下问题:pthread_create(&t1, NULL, &c[0].print, NULL);

错误输出:无法将参数 '3' 的 'void* (tree_item:: )(void )' 转换为 'void* ( )(void )' 到 'int pthread_create(pthread_t*, const pthread_attr_t*, void* ( )(void ), 无效*)'</p>

4

9 回答 9

155

你不能按照你写的方式来做,因为 C++ 类成员函数有一个隐藏this参数传入。 pthread_create()不知道要使用什么值this,所以如果你试图通过将方法转换为函数来绕过编译器适当类型的指针,你会得到一个分段错误。您必须使用静态类方法(没有this参数)或普通函数来引导类:

class C
{
public:
    void *hello(void)
    {
        std::cout << "Hello, world!" << std::endl;
        return 0;
    }

    static void *hello_helper(void *context)
    {
        return ((C *)context)->hello();
    }
};
...
C c;
pthread_t t;
pthread_create(&t, NULL, &C::hello_helper, &c);
于 2009-07-20T03:52:39.250 回答
85

我最喜欢的处理线程的方法是将其封装在 C++ 对象中。这是一个例子:

class MyThreadClass
{
public:
   MyThreadClass() {/* empty */}
   virtual ~MyThreadClass() {/* empty */}

   /** Returns true if the thread was successfully started, false if there was an error starting the thread */
   bool StartInternalThread()
   {
      return (pthread_create(&_thread, NULL, InternalThreadEntryFunc, this) == 0);
   }

   /** Will not return until the internal thread has exited. */
   void WaitForInternalThreadToExit()
   {
      (void) pthread_join(_thread, NULL);
   }

protected:
   /** Implement this method in your subclass with the code you want your thread to run. */
   virtual void InternalThreadEntry() = 0;

private:
   static void * InternalThreadEntryFunc(void * This) {((MyThreadClass *)This)->InternalThreadEntry(); return NULL;}

   pthread_t _thread;
};

要使用它,您只需创建 MyThreadClass 的子类,并实现 InternalThreadEntry() 方法来包含线程的事件循环。当然,在删除线程对象之前,您需要在线程对象上调用 WaitForInternalThreadToExit() (并且有一些机制来确保线程实际退出,否则 WaitForInternalThreadToExit() 将永远不会返回)

于 2009-07-20T03:38:30.510 回答
10

您必须提供pthread_create一个与它正在寻找的签名相匹配的函数。你传递的东西是行不通的。

你可以实现任何你喜欢的静态函数,它可以引用一个实例c并在线程中执行你想要的。pthread_create旨在不仅采用函数指针,而且采用指向“上下文”的指针。在这种情况下,您只需将指针传递给c.

例如:

static void* execute_print(void* ctx) {
    c* cptr = (c*)ctx;
    cptr->print();
    return NULL;
}


void func() {

    ...

    pthread_create(&t1, NULL, execute_print, &c[0]);

    ...
}
于 2009-07-20T03:21:25.490 回答
3

上面的答案很好,但在我的情况下,将函数转换为静态的第一种方法不起作用。我试图将现有代码转换为线程函数,但该代码已经有很多对非静态类成员的引用。封装到 C++ 对象中的第二种解决方案有效,但具有 3 级包装器来运行线程。

我有一个使用现有 C++ 构造的替代解决方案 - 'friend' 函数,它非常适合我的情况。我如何使用“朋友”的示例(将使用上面相同的示例来显示如何使用朋友将其转换为紧凑形式)

    class MyThreadClass
    {
    public:
       MyThreadClass() {/* empty */}
       virtual ~MyThreadClass() {/* empty */}

       bool Init()
       {
          return (pthread_create(&_thread, NULL, &ThreadEntryFunc, this) == 0);
       }

       /** Will not return until the internal thread has exited. */
       void WaitForThreadToExit()
       {
          (void) pthread_join(_thread, NULL);
       }

    private:
       //our friend function that runs the thread task
       friend void* ThreadEntryFunc(void *);

       pthread_t _thread;
    };

    //friend is defined outside of class and without any qualifiers
    void* ThreadEntryFunc(void *obj_param) {
    MyThreadClass *thr  = ((MyThreadClass *)obj_param); 

    //access all the members using thr->

    return NULL;
    }

当然,我们可以使用 boost::thread 并避免所有这些,但我试图修改 C++ 代码以不使用 boost(代码链接到 boost 只是为了这个目的)

于 2015-07-17T20:21:38.143 回答
1

我的第一个答案是希望它对某人有用:我现在这是一个老问题,但我遇到了与上述问题完全相同的错误,因为我正在编写一个 TcpServer 类并且我试图使用 pthreads。我发现了这个问题,现在我明白为什么会这样了。我最终这样做了:

#include <thread>

运行线程的方法->void* TcpServer::sockethandler(void* lp) {/*code here*/}

我用 lambda 调用它->std::thread( [=] { sockethandler((void*)csock); } ).detach();

这对我来说似乎是一种干净的方法。

于 2016-08-30T14:35:29.793 回答
0

太多次我找到了解决您所要求的方法的方法,在我看来这太复杂了。例如,您必须定义新的类类型、链接库等。所以我决定编写几行代码,让最终用户基本上能够“线程化”一个“void ::method(void)”不管什么课。当然,我实现的这个解决方案可以扩展、改进等,所以,如果您需要更具体的方法或功能,请添加它们,请善待我。

这里有 3 个文件显示了我所做的。

    // A basic mutex class, I called this file Mutex.h
#ifndef MUTEXCONDITION_H_
#define MUTEXCONDITION_H_

#include <pthread.h>
#include <stdio.h>

class MutexCondition
{
private:
    bool init() {
        //printf("MutexCondition::init called\n");
        pthread_mutex_init(&m_mut, NULL);
        pthread_cond_init(&m_con, NULL);
        return true;
    }

    bool destroy() {
        pthread_mutex_destroy(&m_mut);
        pthread_cond_destroy(&m_con);
        return true;
    }

public:
    pthread_mutex_t m_mut;
    pthread_cond_t m_con;

    MutexCondition() {
        init();
    }
    virtual ~MutexCondition() {
        destroy();
    }

    bool lock() {
        pthread_mutex_lock(&m_mut);
        return true;
    }

    bool unlock() {
        pthread_mutex_unlock(&m_mut);
        return true;
    }

    bool wait() {
        lock();
        pthread_cond_wait(&m_con, &m_mut);
        unlock();
        return true;
    }

    bool signal() {
        pthread_cond_signal(&m_con);
        return true;
    }
};
#endif
// End of Mutex.h

// 封装所有线程化方法工作的类(test.h):

#ifndef __THREAD_HANDLER___
#define __THREAD_HANDLER___

#include <pthread.h>
#include <vector>
#include <iostream>
#include "Mutex.h"

using namespace std;

template <class T> 
class CThreadInfo
{
  public:
    typedef void (T::*MHT_PTR) (void);
    vector<MHT_PTR> _threaded_methods;
    vector<bool> _status_flags;
    T *_data;
    MutexCondition _mutex;
    int _idx;
    bool _status;

    CThreadInfo(T* p1):_data(p1), _idx(0) {}
    void setThreadedMethods(vector<MHT_PTR> & pThreadedMethods)
    {
        _threaded_methods = pThreadedMethods;
      _status_flags.resize(_threaded_methods.size(), false);
    }
};

template <class T> 
class CSThread {
  protected:
    typedef void (T::*MHT_PTR) (void);
    vector<MHT_PTR> _threaded_methods;
    vector<string> _thread_labels;
    MHT_PTR _stop_f_pt;
    vector<T*> _elements;
    vector<T*> _performDelete;
    vector<CThreadInfo<T>*> _threadlds;
    vector<pthread_t*> _threads;
    int _totalRunningThreads;

    static void * gencker_(void * pArg)
    {
      CThreadInfo<T>* vArg = (CThreadInfo<T> *) pArg;
      vArg->_mutex.lock();
      int vIndex = vArg->_idx++;
      vArg->_mutex.unlock();

      vArg->_status_flags[vIndex]=true;

      MHT_PTR mhtCalledOne = vArg->_threaded_methods[vIndex];
      (vArg->_data->*mhtCalledOne)();
      vArg->_status_flags[vIndex]=false;
        return NULL;
    }

  public:
    CSThread ():_stop_f_pt(NULL), _totalRunningThreads(0)  {}
    ~CSThread()
    {
      for (int i=_threads.size() -1; i >= 0; --i)
          pthread_detach(*_threads[i]);

      for (int i=_threadlds.size() -1; i >= 0; --i)
        delete _threadlds[i];

      for (int i=_elements.size() -1; i >= 0; --i)
         if (find (_performDelete.begin(), _performDelete.end(), _elements[i]) != _performDelete.end())
              delete _elements[i];
    }
    int  runningThreadsCount(void) {return _totalRunningThreads;}
    int  elementsCount()        {return _elements.size();}
    void addThread (MHT_PTR p, string pLabel="") { _threaded_methods.push_back(p); _thread_labels.push_back(pLabel);}
    void clearThreadedMethods() { _threaded_methods.clear(); }
    void getThreadedMethodsCount() { return _threaded_methods.size(); }
    void addStopMethod(MHT_PTR p)  { _stop_f_pt  = p; }
    string getStatusStr(unsigned int _elementIndex, unsigned int pMethodIndex)
    {
      char ch[99];

      if (getStatus(_elementIndex, pMethodIndex) == true)
        sprintf (ch, "[%s] - TRUE\n", _thread_labels[pMethodIndex].c_str());
      else 
        sprintf (ch, "[%s] - FALSE\n", _thread_labels[pMethodIndex].c_str());

      return ch;
    }
    bool getStatus(unsigned int _elementIndex, unsigned int pMethodIndex)
    {
      if (_elementIndex > _elements.size()) return false;
      return _threadlds[_elementIndex]->_status_flags[pMethodIndex];
    }

    bool run(unsigned int pIdx) 
    {
      T * myElem = _elements[pIdx];
      _threadlds.push_back(new CThreadInfo<T>(myElem));
      _threadlds[_threadlds.size()-1]->setThreadedMethods(_threaded_methods);

      int vStart = _threads.size();
      for (int hhh=0; hhh<_threaded_methods.size(); ++hhh)
          _threads.push_back(new pthread_t);

      for (int currentCount =0; currentCount < _threaded_methods.size(); ++vStart, ++currentCount)
      {
                if (pthread_create(_threads[vStart], NULL, gencker_, (void*) _threadlds[_threadlds.size()-1]) != 0)
        {
                // cout <<"\t\tThread " << currentCount << " creation FAILED for element: " << pIdx << endl;
                    return false;
                }
        else
        {
            ++_totalRunningThreads;
             // cout <<"\t\tThread " << currentCount << " creation SUCCEDED for element: " << pIdx << endl;
                }
      }
      return true;
    }

    bool run() 
    {
            for (int vI = 0; vI < _elements.size(); ++vI) 
            if (run(vI) == false) return false;
          // cout <<"Number of currently running threads: " << _totalRunningThreads << endl;
        return true;
    }

    T * addElement(void)
    {
      int vId=-1;
      return addElement(vId);
    }

    T * addElement(int & pIdx)
    {
      T * myElem = new T();
      _elements.push_back(myElem);
      pIdx = _elements.size()-1;
      _performDelete.push_back(myElem);
      return _elements[pIdx];
    }

    T * addElement(T *pElem)
    {
      int vId=-1;
      return addElement(pElem, vId);
    }

    T * addElement(T *pElem, int & pIdx)
    {
      _elements.push_back(pElem);
      pIdx = _elements.size()-1;
      return pElem;
    }

    T * getElement(int pId) { return _elements[pId]; }

    void stopThread(int i)  
    {
      if (_stop_f_pt != NULL) 
      {
         ( _elements[i]->*_stop_f_pt)() ;
      }
      pthread_detach(*_threads[i]);
      --_totalRunningThreads;
    }

    void stopAll()  
    {
      if (_stop_f_pt != NULL) 
        for (int i=0; i<_elements.size(); ++i) 
        {
          ( _elements[i]->*_stop_f_pt)() ;
        }
      _totalRunningThreads=0;
    }
};
#endif
// end of test.h

// 一个使用示例文件“test.cc”,我在 linux 上编译过 封装所有工作以线程化方法的类:g++ -o mytest.exe test.cc -I。-lpthread -lstdc++

#include <test.h>
#include <vector>
#include <iostream>
#include <Mutex.h>

using namespace std;

// Just a class for which I need to "thread-ize" a some methods
// Given that with OOP the objecs include both "functions" (methods)
// and data (attributes), then there is no need to use function arguments,
// just a "void xxx (void)" method.
// 
class TPuck
{
  public:
   bool _go;
   TPuck(int pVal):_go(true)
   {
     Value = pVal;
   }
   TPuck():_go(true)
   {
   }
   int Value;
   int vc;

   void setValue(int p){Value = p; }

   void super()
   {
     while (_go)
     {
      cout <<"super " << vc << endl;
            sleep(2);
         }
      cout <<"end of super " << vc << endl;
   }

   void vusss()
   {
     while (_go)
     {
      cout <<"vusss " << vc << endl;
      sleep(2);
     }
      cout <<"end of vusss " << vc << endl;
   }

   void fazz()
   {
     static int vcount =0;
     vc = vcount++;
     cout <<"Puck create instance: " << vc << endl;
     while (_go)
     {
       cout <<"fazz " << vc << endl;
       sleep(2);
     }
     cout <<"Completed TPuck..fazz instance "<<  vc << endl;
   }

   void stop()
   {
      _go=false;
      cout << endl << "Stopping TPuck...." << vc << endl;
   }
};


int main(int argc, char* argv[])
{
  // just a number of instances of the class I need to make threads
  int vN = 3;

  // This object will be your threads maker.
  // Just declare an instance for each class
  // you need to create method threads
  //
  CSThread<TPuck> PuckThreadMaker;
  //
  // Hera I'm telling which methods should be threaded
  PuckThreadMaker.addThread(&TPuck::fazz, "fazz1");
  PuckThreadMaker.addThread(&TPuck::fazz, "fazz2");
  PuckThreadMaker.addThread(&TPuck::fazz, "fazz3");
  PuckThreadMaker.addThread(&TPuck::vusss, "vusss");
  PuckThreadMaker.addThread(&TPuck::super, "super");

  PuckThreadMaker.addStopMethod(&TPuck::stop);

  for (int ii=0; ii<vN; ++ii)
  {
    // Creating instances of the class that I need to run threads.
    // If you already have your instances, then just pass them as a
    // parameter such "mythreadmaker.addElement(&myinstance);"
    TPuck * vOne = PuckThreadMaker.addElement();
  }

  if (PuckThreadMaker.run() == true)
  {
    cout <<"All running!" << endl;
  }
  else
  {
    cout <<"Error: not all threads running!" << endl;
  }

  sleep(1);
  cout <<"Totale threads creati: " << PuckThreadMaker.runningThreadsCount()  << endl;
  for (unsigned int ii=0; ii<vN; ++ii)
  {
    unsigned int kk=0;
    cout <<"status for element " << ii << " is " << PuckThreadMaker.getStatusStr(ii, kk++) << endl; 
    cout <<"status for element " << ii << " is " << PuckThreadMaker.getStatusStr(ii, kk++) << endl; 
    cout <<"status for element " << ii << " is " << PuckThreadMaker.getStatusStr(ii, kk++) << endl; 
    cout <<"status for element " << ii << " is " << PuckThreadMaker.getStatusStr(ii, kk++) << endl; 
    cout <<"status for element " << ii << " is " << PuckThreadMaker.getStatusStr(ii, kk++) << endl; 
  }

  sleep(2);
  PuckThreadMaker.stopAll();
  cout <<"\n\nAfter the stop!!!!" << endl;
  sleep(2);

  for (int ii=0; ii<vN; ++ii)
  {
    int kk=0;
    cout <<"status for element " << ii << " is " << PuckThreadMaker.getStatusStr(ii, kk++) << endl; 
    cout <<"status for element " << ii << " is " << PuckThreadMaker.getStatusStr(ii, kk++) << endl; 
    cout <<"status for element " << ii << " is " << PuckThreadMaker.getStatusStr(ii, kk++) << endl; 
    cout <<"status for element " << ii << " is " << PuckThreadMaker.getStatusStr(ii, kk++) << endl; 
    cout <<"status for element " << ii << " is " << PuckThreadMaker.getStatusStr(ii, kk++) << endl; 
  }

  sleep(5);
  return 0;
}

// End of test.cc
于 2018-01-31T08:42:16.047 回答
0

这是一个有点老的问题,但却是许多人面临的一个非常普遍的问题。以下是使用 std::thread 处理此问题的简单而优雅的方法

#include <iostream>
#include <utility>
#include <thread>
#include <chrono>

class foo
{
    public:
        void bar(int j)
        {
            n = j;
            for (int i = 0; i < 5; ++i) {
                std::cout << "Child thread executing\n";
                ++n;
                std::this_thread::sleep_for(std::chrono::milliseconds(10));
            }
        }
        int n = 0;
};

int main()
{
    int n = 5;
    foo f;
    std::thread class_thread(&foo::bar, &f, n); // t5 runs foo::bar() on object f
    std::this_thread::sleep_for(std::chrono::milliseconds(20));
    std::cout << "Main Thread running as usual";
    class_thread.join();
    std::cout << "Final value of foo::n is " << f.n << '\n';
}

上面的代码还负责将参数传递给线程函数。

有关更多详细信息,请参阅std::thread文档。

于 2019-10-03T10:53:32.540 回答
-1

我的猜测是这是 b/c,它被 C++ b/c 弄乱了一点,你向它发送一个 C++ 指针,而不是 C 函数指针。显然是有区别的。尝试做一个

(void)(*p)(void) = ((void) *(void)) &c[0].print; //(check my syntax on that cast)

然后发送 p。

我也用成员函数完成了你所做的事情,但我在使用它的类中做了它,并且使用了一个静态函数——我认为这有所作为。

于 2009-07-20T03:31:23.020 回答
-1

C++:如何将类成员函数传递给 pthread_create()?

http://thispointer.com/c-how-to-pass-class-member-function-to-pthread_create/

typedef void * (*THREADFUNCPTR)(void *);

class C { 
   // ...
   void *print(void *) { cout << "Hello"; }
}

pthread_create(&threadId, NULL, (THREADFUNCPTR) &C::print, NULL);
于 2017-08-22T23:43:43.553 回答