带有数据的表(它是一个 data.table 对象),如下所示:
date stock_id logret
1: 2011-01-01 1 0.001
2: 2011-01-02 1 0.003
3: 2011-01-03 1 0.005
4: 2011-01-04 1 0.007
5: 2011-01-05 1 0.009
6: 2011-01-06 1 0.011
7: 2011-01-01 2 0.013
8: 2011-01-02 2 0.015
9: 2011-01-03 2 0.017
10: 2011-01-04 2 0.019
11: 2011-01-05 2 0.021
12: 2011-01-06 2 0.023
13: 2011-01-01 3 0.025
14: 2011-01-02 3 0.027
15: 2011-01-03 3 0.029
16: 2011-01-04 3 0.031
17: 2011-01-05 3 0.033
18: 2011-01-06 3 0.035
以上可以创建为:
DT = data.table(
date=rep(as.Date('2011-01-01')+0:5,3) ,
stock_id=c(1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3),
logret=seq(0.001, by=0.002, len=18));
setkeyv(DT,c('stock_id','date'))
当然,真正的表格更大,有更多的 stock_id 和日期。旨在重塑此数据表,以便我可以对所有 stockid log_returns 及其相应的 log_returns 进行回归,滞后 1 天(或周末的前交易日)。
最终结果如下所示:
date stock_id logret lagret
1: 2011-01-01 1 0.001 NA
2: 2011-01-02 1 0.003 0.001
3: 2011-01-03 1 0.005 0.003
....
16: 2011-01-04 3 0.031 0.029
17: 2011-01-05 3 0.033 0.031
18: 2011-01-06 3 0.035 0.033
我发现这个数据结构真的很难在不混淆我的股票的情况下构建。