该问题需要生成n-th
类似于斐波那契数列的数列元素。但是,它有点棘手,因为n
它非常大(1 <= n <= 10^9)。答案然后模1000000007。序列定义如下:
使用生成函数,我得到以下公式:
如果我使用序列方法,那么答案可以是模数,但运行速度非常慢。事实上,我得到了time limit exceed
很多次。我还尝试使用表来预生成一些初始值(缓存),但速度仍然不够快。此外,array/vector
与 10^9 相比,我可以在 (C++) 中存储的最大元素数量太少,所以我猜这种方法也行不通。
如果我使用直接公式,那么它运行得非常快,但只是因为n
它很小。对于n
大的,双精度数将被截断,而且我将无法用该数字修改我的答案,因为模数仅适用于整数。
我没有想法,我认为必须有一个非常好的技巧来解决这个问题,不幸的是我想不出一个。任何想法将不胜感激。
这是我的初步方法:
#include <iostream>
#include <vector>
#include <string>
#include <algorithm>
#include <cmath>
#include <cassert>
#include <bitset>
#include <fstream>
#include <iomanip>
#include <set>
#include <stack>
#include <sstream>
#include <cstdio>
#include <map>
#include <cmath>
using namespace std;
typedef unsigned long long ull;
ull count_fair_coins_by_generating_function(ull n) {
n--;
return
(sqrt(3.0) + 1)/((sqrt(3.0) - 1) * 2 * sqrt(3.0)) * pow(2 / (sqrt(3.0) - 1), n * 1.0)
+
(1 - sqrt(3.0))/((sqrt(3.0) + 1) * 2 * sqrt(3.0)) * pow(-2 / (sqrt(3.0) + 1), n * 1.0);
}
ull count_fair_coins(ull n) {
if (n == 1) {
return 1;
}
else if (n == 2) {
return 3;
}
else {
ull a1 = 1;
ull a2 = 3;
ull result;
for (ull i = 3; i <= n; ++i) {
result = (2*a2 + 2*a1) % 1000000007;
a1 = a2;
a2 = result;
}
return result;
}
}
void inout_my_fair_coins() {
int test_cases;
cin >> test_cases;
map<ull, ull> cache;
ull n;
while (test_cases--) {
cin >> n;
cout << count_fair_coins_by_generating_function(n) << endl;
cout << count_fair_coins(n) << endl;
}
}
int main() {
inout_my_fair_coins();
return 0;
}
更新
由于比赛结束了,我根据tskuzzy
想法为有兴趣的人发布了我的解决方案。再次感谢tskuzzy
。您可以在此处查看原始问题陈述:http:
//www.codechef.com/problems/CSUMD
首先,您需要计算出这些1 coin
和的概率2 coin
,然后获取一些初始值以获得序列。完整的解决方案在这里:
#include <iostream>
#include <vector>
#include <string>
#include <algorithm>
#include <cmath>
#include <cassert>
#include <bitset>
#include <fstream>
#include <iomanip>
#include <set>
#include <stack>
#include <sstream>
#include <cstdio>
#include <map>
#include <cmath>
using namespace std;
typedef unsigned long long ull;
const ull special_prime = 1000000007;
/*
Using generating function for the recurrence:
| 1 if n = 1
a_n = | 3 if n = 2
| 2a_{n-1} + 2a_{n-2} if n > 2
This method is probably the fastest one but it won't work
because when n is large, double just can't afford it. Plus,
using this formula, we can't apply mod for floating point number.
1 <= n <= 21
*/
ull count_fair_coins_by_generating_function(ull n) {
n--;
return
(sqrt(3.0) + 1)/((sqrt(3.0) - 1) * 2 * sqrt(3.0)) * pow(2 / (sqrt(3.0) - 1), n * 1.0)
+
(1 - sqrt(3.0))/((sqrt(3.0) + 1) * 2 * sqrt(3.0)) * pow(-2 / (sqrt(3.0) + 1), n * 1.0);
}
/*
Naive approach, it works but very slow.
Useful for testing.
*/
ull count_fair_coins(ull n) {
if (n == 1) {
return 1;
}
else if (n == 2) {
return 3;
}
else {
ull a1 = 1;
ull a2 = 3;
ull result;
for (ull i = 3; i <= n; ++i) {
result = (2*a2 + 2*a1) % 1000000007;
a1 = a2;
a2 = result;
}
return result;
}
}
struct matrix_2_by_2 {
ull m[2][2];
ull a[2][2];
ull b[2][2];
explicit matrix_2_by_2(ull a00, ull a01, ull a10, ull a11) {
m[0][0] = a00;
m[0][1] = a01;
m[1][0] = a10;
m[1][1] = a11;
}
matrix_2_by_2 operator *(const matrix_2_by_2& rhs) const {
matrix_2_by_2 result(0, 0, 0, 0);
result.m[0][0] = (m[0][0] * rhs.m[0][0]) + (m[0][1] * rhs.m[1][0]);
result.m[0][1] = (m[0][0] * rhs.m[0][1]) + (m[0][1] * rhs.m[1][1]);
result.m[1][0] = (m[1][0] * rhs.m[0][0]) + (m[1][1] * rhs.m[1][0]);
result.m[1][1] = (m[1][0] * rhs.m[0][1]) + (m[1][1] * rhs.m[1][1]);
return result;
}
void square() {
a[0][0] = b[0][0] = m[0][0];
a[0][1] = b[0][1] = m[0][1];
a[1][0] = b[1][0] = m[1][0];
a[1][1] = b[1][1] = m[1][1];
m[0][0] = (a[0][0] * b[0][0]) + (a[0][1] * b[1][0]);
m[0][1] = (a[0][0] * b[0][1]) + (a[0][1] * b[1][1]);
m[1][0] = (a[1][0] * b[0][0]) + (a[1][1] * b[1][0]);
m[1][1] = (a[1][0] * b[0][1]) + (a[1][1] * b[1][1]);
}
void mod(ull n) {
m[0][0] %= n;
m[0][1] %= n;
m[1][0] %= n;
m[1][1] %= n;
}
/*
exponentiation by squaring algorithm
| 1 if n = 0
| (1/x)^n if n < 0
x^n = | x.x^({(n-1)/2})^2 if n is odd
| (x^{n/2})^2 if n is even
The following algorithm calculate a^p % m
int modulo(int a, int p, int m){
long long x = 1;
long long y = a;
while (p > 0) {
if (p % 2 == 1){
x = (x * y) % m;
}
// squaring the base
y = (y * y) % m;
p /= 2;
}
return x % c;
}
To apply for matrix, we need an identity which is
equivalent to 1, then perform multiplication for matrix
in similar manner. Thus the algorithm is defined
as follows:
*/
void operator ^=(ull p) {
matrix_2_by_2 identity(1, 0, 0, 1);
while (p > 0) {
if (p % 2) {
identity = operator*(identity);
identity.mod(special_prime);
}
this->square();
this->mod(special_prime);
p /= 2;
}
m[0][0] = identity.m[0][0];
m[0][1] = identity.m[0][1];
m[1][0] = identity.m[1][0];
m[1][1] = identity.m[1][1];
}
friend
ostream& operator <<(ostream& out, const matrix_2_by_2& rhs) {
out << rhs.m[0][0] << ' ' << rhs.m[0][1] << '\n';
out << rhs.m[1][0] << ' ' << rhs.m[1][1] << '\n';
return out;
}
};
/*
|a_{n+2}| = |2 2|^n x |3|
|a_{n+1}| |1 0| |1|
*/
ull count_fair_coins_by_matrix(ull n) {
if (n == 1) {
return 1;
} else {
matrix_2_by_2 m(2, 2, 1, 0);
m ^= (n - 1);
return (m.m[1][0] * 3 + m.m[1][1]) % 1000000007;
}
}
void inout_my_fair_coins() {
int test_cases;
scanf("%d", &test_cases);
ull n;
while (test_cases--) {
scanf("%llu", &n);
printf("%d\n", count_fair_coins_by_matrix(n));
}
}
int main() {
inout_my_fair_coins();
return 0;
}