首先,快速浏览索引数组:
template<std::size_t ...S>
struct seq { };
// And now an example of how index arrays are used to print a tuple:
template <typename ...T, std::size_t ...S>
void print_helper(std::tuple<T...> tup, seq<S...> s) {
// this trick is exceptionally useful:
// ((std::cout << std::get<S>(tup) << " "), 0) executes the cout
// and returns 0.
// { 0... } expands (because the expression has an S in it),
// returning an array of length sizeof...(S) full of zeros.
// The array isn't used, but it's a great hack to do one operation
// for each std::size_t in S.
int garbage[] = { ((std::cout << std::get<S>(tup) << " "), 0)... };
std::cout << std::endl;
}
现在使用我们的 print_helper 函数:
int main() {
print_helper(std::make_tuple(10, 0.66, 'h'), seq<0,1,2>() );
return 0;
}
不过,打字seq<0,1,2>
可能会有点痛苦。所以我们可以使用模板递归来创建一个类来生成seq
s,这样gens<3>::type
就和seq<0,1,2>
:
template<std::size_t N, std::size_t ...S>
struct gens : gens<N-1, N-1, S...> { };
template<std::size_t ...S>
struct gens<0, S...> {
typedef seq<S...> type;
};
int main() {
print_helper(std::make_tuple(10, 0.66, 'h'), gens<3>::type() );
return 0;
}
由于N
ingens<N>::type
始终是元组中元素的数量,因此您可以换print_helper
行以使其更容易:
template <typename ...T>
void print(std::tuple<T...> tup) {
print_helper(tup, typename gens<sizeof...(T)>::type() );
}
int main() {
print(std::make_tuple(10, 0.66, 'h'));
return 0;
}
请注意,模板参数可以自动推导出(输入所有这些会很痛苦,不是吗?)。
现在,tuple_zip
功能:
和以前一样,从辅助函数开始:
template <template <typename ...> class Tup1,
template <typename ...> class Tup2,
typename ...A, typename ...B,
std::size_t ...S>
auto tuple_zip_helper(Tup1<A...> t1, Tup2<B...> t2, seq<S...> s) ->
decltype(std::make_tuple(std::make_pair(std::get<S>(t1),std::get<S>(t2))...)) {
return std::make_tuple( std::make_pair( std::get<S>(t1), std::get<S>(t2) )...);
}
代码有点棘手,尤其是尾随返回类型(返回类型声明为auto
并->
在参数定义后提供)。这让我们避免了定义返回类型的问题,只需声明它返回函数体中使用的表达式(如果x
和y
是int
s,delctype(x+y)
在编译时解析为int
)。
现在将它包装在一个提供适当seq<0, 1...N>
using的函数中gens<N>::type
:
template <template <typename ...> class Tup1,
template <typename ...> class Tup2,
typename ...A, typename ...B>
auto tuple_zip(Tup1<A...> t1, Tup2<B...> t2) ->
decltype(tuple_zip_helper(t1, t2, typename gens<sizeof...(A)>::type() )) {
static_assert(sizeof...(A) == sizeof...(B), "The tuple sizes must be the same");
return tuple_zip_helper( t1, t2, typename gens<sizeof...(A)>::type() );
}
现在您可以按照问题中的说明使用它:
int main() {
auto tup1 = std::make_tuple(1, 'b', -10);
auto tup2 = std::make_tuple(2.5, 2, std::string("even strings?!"));
std::tuple<
std::pair<int, double>,
std::pair<char, int>,
std::pair<int, std::string> > x = tuple_zip( tup1, tup2 );
// this is also equivalent:
// auto x = tuple_zip( tup1, tup2 );
return 0;
}
最后,如果你提供一个<<
操作符,std::pair
你可以使用我们上面定义的 print 函数来打印压缩后的结果:
template <typename A, typename B>
std::ostream & operator << (std::ostream & os, const std::pair<A, B> & pair) {
os << "pair("<< pair.first << "," << pair.second << ")";
return os;
}
int main() {
auto tup1 = std::make_tuple(1, 'b', -10);
auto tup2 = std::make_tuple(2.5, 2, std::string("even strings?!"));
auto x = tuple_zip( tup1, tup2 );
std::cout << "zipping: ";
print(tup1);
std::cout << "with : ";
print(tup2);
std::cout << "yields : ";
print(x);
return 0;
}
输出是:
zipping: 1 b 10
with : 2.5 2 even strings?!
产生:pair(1,2.5) pair(b,2) pair(10,even strings?!)
Like std::array
,std::tuple
是在编译时定义的,因此它可用于生成更可优化的代码(与 和 之类的容器相比,在编译时已知更多信息std::vector
)std::list
。因此,即使有时需要做一些工作,有时您也可以使用它来编写快速而聪明的代码。快乐黑客!
编辑:
根据要求,允许不同大小的元组和空指针填充:
template <typename T, std::size_t N, std::size_t ...S>
auto array_to_tuple_helper(const std::array<T, N> & arr, seq<S...> s) -> decltype(std::make_tuple(arr[S]...)) {
return std::make_tuple(arr[S]...);
}
template <typename T, std::size_t N>
auto array_to_tuple(const std::array<T, N> & arr) -> decltype( array_to_tuple_helper(arr, typename gens<N>::type()) ) {
return array_to_tuple_helper(arr, typename gens<N>::type());
}
template <std::size_t N, template <typename ...> class Tup, typename ...A>
auto pad(Tup<A...> tup) -> decltype(tuple_cat(tup, array_to_tuple(std::array<std::nullptr_t, N>()) )) {
return tuple_cat(tup, array_to_tuple(std::array<std::nullptr_t, N>()) );
}
#define EXTENSION_TO_FIRST(first,second) ((first)>(second) ? (first)-(second) : 0)
template <template <typename ...> class Tup1, template <typename ...> class Tup2, typename ...A, typename ...B>
auto pad_first(Tup1<A...> t1, Tup2<B...> t2) -> decltype( pad<EXTENSION_TO_FIRST(sizeof...(B), sizeof...(A)), Tup1, A...>(t1) ) {
return pad<EXTENSION_TO_FIRST(sizeof...(B), sizeof...(A)), Tup1, A...>(t1);
}
template <template <typename ...> class Tup1, template <typename ...> class Tup2, typename ...A, typename ...B>
auto diff_size_tuple_zip(Tup1<A...> t1, Tup2<B...> t2) ->
decltype( tuple_zip( pad_first(t1, t2), pad_first(t2, t1) ) ) {
return tuple_zip( pad_first(t1, t2), pad_first(t2, t1) );
}
顺便说一句,你现在需要这个来使用我们方便的print
功能:
std::ostream & operator << (std::ostream & os, std::nullptr_t) {
os << "null_ptr";
return os;
}