我无法理解回溯,我可以从概念上理解我们采取了行动,然后如果无法从中找到解决方案,我们会尝试下一个解决方案。
考虑到这一点,我正在尝试解决 N Queens 问题,我正在找出可以放置在下一行中的所有可能的候选人,然后一个一个地尝试它们,如果候选人没有产生解决方案,我弹出它并与下一个一起去。
这是我提出的代码的核心:
void n_queens(int n)
{
vector<int> queens = vector<int>();
backtrack(queens,0,n);
}
void backtrack(vector<int>& queens, int current_row, int N)
{
// check if the configuration is solved
if(is_solution(queens, N))
{
print_solution(queens,N);
}
else
{
// construct a vector of valid candidates
vector<int> candidates = vector<int>();
if(construct_candidates(queens,current_row,N,candidates))
{
for(int i=0; i < candidates.size(); ++i)
{
// Push this in the partial solution and move further
queens.push_back(candidates[i]);
backtrack(queens,current_row + 1,N);
// If no feasible solution was found then we ought to remove this and try the next one
queens.pop_back();
}
}
}
}
bool construct_candidates(const vector<int>& queens, int row, int N, vector<int>& candidates)
{
// Returns false if there are no possible candidates, we must follow a different
// branch if this so happens
for(int i=0; i<N; ++i)
{
if(is_safe_square(queens,row,i,N))
{
// Add a valid candidate, this can be done since we pass candidates by reference
candidates.push_back(i);
}
}
return candidates.size() > 0;
}
它不会为我提供的任何输入打印任何内容。我尝试运行它gdb
但没有成功,我认为这是因为我对回溯的基本理解存在问题。
我已经在几本书和一个在线教程中阅读了关于回溯的内容,但我仍然感到朦胧,如果有人能给我一些想法来解决这个问题并帮助我理解这个有点不直观的概念,那就太好了。
整个可编译的源代码是:
#include <iostream>
#include <vector>
#include <cmath>
using namespace std;
// The method prototypes
void n_queens(int n);
void backtrack(vector<int>&, int current_row, int N);
bool construct_candidates(const vector<int>&, int row, int N, vector<int>&);
bool is_safe_square(const vector<int>&, int row, int col, int N);
bool is_solution(const vector<int>&, int N);
void print_solution(const vector<int>&, int N);
int main()
{
int n;
cin>>n;
n_queens(n);
return 0;
}
void n_queens(int n)
{
vector<int> queens = vector<int>();
backtrack(queens,0,n);
}
void backtrack(vector<int>& queens, int current_row, int N)
{
// check if the configuration is solved
if(is_solution(queens, N))
{
print_solution(queens,N);
}
else
{
// construct a vector of valid candidates
vector<int> candidates = vector<int>();
if(construct_candidates(queens,current_row,N,candidates))
{
for(int i=0; i < candidates.size(); ++i)
{
// Push this in the partial solution and move further
queens.push_back(candidates[i]);
backtrack(queens,current_row + 1,N);
// If no feasible solution was found then we ought to remove this and try the next one
queens.pop_back();
}
}
}
}
bool construct_candidates(const vector<int>& queens, int row, int N, vector<int>& candidates)
{
// Returns false if there are no possible candidates, we must follow a different
// branch if this so happens
for(int i=0; i<N; ++i)
{
if(is_safe_square(queens,row,i,N))
{
// Add a valid candidate, this can be done since we pass candidates by reference
candidates.push_back(i);
}
}
return candidates.size() > 0;
}
bool is_safe_square(const vector<int>& queens, int row, int col, int N)
{
for(int i=0; i<queens.size(); ++i)
{
// case when the queens are already placed in the same row or column
if(queens[i] == row || queens[i] == col) return false;
// case when there is a diagonal threat
// remember! y = mx + c for a diagonal m = 1 therefore |x2 - x1| = |y2 - y1|
if(abs(i - row) == abs(queens[i] - col)) return false;
}
//Returns true when no unsafe square is found
//handles the case when there are no queens on the board trivially
return true;
}
bool is_solution(const vector<int>& queens, int N)
{
return queens.size() == N;
}
void print_solution(const vector<int>& queens, int N)
{
for(int i=0; i<N; ++i)
{
for(int j=0; j<N; ++j)
{
if(queens[i] == j){ cout<<'Q'; }
else { cout<<'_'; }
}
cout<<endl;
}
}