0

对 R 来说相对较新,所以提前为自己一无所知而道歉。

多年来,我正在一个国家的多个地点处理几个(非常大的)观测数据集。我需要计算在第 x 周提交观察的站点总数中在第 x 周注意到特定物种的站点的比例(基本上是存在/不存在数据。)我有一个数据集可以提供每个个体的详细信息物种观察,以及每周的观察总数。因此,我需要一些函数来计算该物种在该周记录的站点数量,然后将其除以在同一周内记录任何物种观察的站点总数。观察记录用一周(1-53)和一年(1995-2011)记录。

species.data 示例(为便于粘贴而列为 csv):

SITE_ID, SPECIES, WEEKNO, YEAR
1289, Attenb., 1, 1995
1538, Attenb., 1, 1995
1894, Attenb., 2, 1995
1286, Attenb., 4, 1995
1238, Attenb., 7, 1995
1892, Attenb., 7, 1995

以及 total.obs.data 的示例:

YEAR, WEEKNO, TOTALOBS,
1995, 1, 100
1995, 2, 780
1995, 3, 100
1995, 4, 189
1995, 5, 382
1995, 6, 100
1995, 7, 899
1995, 8, 129

(所以在这里我不会在 1995 年第 1 周的比例是 2/100,并且能够构建 GLM 或 GAM)

4

2 回答 2

0

让我试一试,同时注意上面评论中已经说明的问题的所有限制

#Create the data frame with the total observations
tot.obs<-data.frame(year=rep(1995,10), weekno=1:10, obs=floor(runif(n=10,80,100)))
#Create the variable week-year
tot.obs$week.year<-paste(tot.obs$week,tot.obs$year,sep="-")

#Create the data frame species observations
species.data<-data.frame(site=factor(floor(runif(n=5,2000,3000))), week=c(1,1,2,4,7), year=rep(1995,5),observ=rep(1,5))
species.data$week.year<-paste(species.data$week,species.data$year,sep="-")
species.data$total.obs<-NA

#Match the total observations form the tot.obs data frame to the species data frame. You can probably do it much faster but here is a "quick and dirty way"

for (i in 1:dim(species.data)[1]){
  species.data$total.obs[i]<-tot.obs$obs[tot.obs$week.year==species.data$week.year[i]]  
}

#Calculates the percentage of the total observation that each center contributes
species.data$per.obs<-species.data$observ/ species.data$total.obs 

#For the presentation of the data, reshape is your friend
library(reshape)
species.data.melt<-melt(species.data,id.vars=c("site","week.year"), measure.vars="per.obs")

cast(species.data.melt,site~week.year, fun.aggregate=sum)


site     1-1995     2-1995     4-1995     7-1995
1 2436 0.00000000 0.00000000 0.01010101 0.00000000
2 2501 0.00000000 0.01123596 0.00000000 0.00000000
3 2590 0.00000000 0.00000000 0.00000000 0.01123596
4 2608 0.01030928 0.00000000 0.00000000 0.00000000
5 2942 0.01030928 0.00000000 0.00000000 0.00000000

否则,如果您对每个中心的观察不感兴趣,事情会容易得多:

species.data.melt2<-melt(species.data,id.vars=c("week.year"), measure.vars="observ")
species.obs.total<-data.frame(cast(species.data.melt2,week.year~value, fun.aggregate=sum))
colnames(species.obs.total)[2]<-"aggregated.total"
species.obs.total$total<-NA

for (i in 1:dim(species.obs.total)[1]){
  species.obs.total$total[i]<-tot.obs$obs[tot.obs$week.year==species.obs.total$week.year[i]]  
}

species.obs.total$perc<-species.obs.total$aggregated.total/ species.obs.total$total
species.obs.total


  week.year aggregated.total total       perc
1    1-1995                2    97 0.02061856
2    2-1995                1    89 0.01123596
3    4-1995                1    99 0.01010101
4    7-1995                1    89 0.01123596
于 2012-07-01T20:29:57.770 回答
0

目前,数据过于简单,无法支持测试中的复杂性。该xtabs函数创建一个矩阵对象,可以除以该周的总数:

> xtblspec <-  xtabs( ~ SPECIES+ SITE_ID +WEEKNO + YEAR  , data=dat)     
> xtblspec
, , WEEKNO = 1, YEAR = 1995

         SITE_ID
SPECIES   1238 1286 1289 1538 1892 1894
  Attenb.    0    0    1    1    0    0

, , WEEKNO = 2, YEAR = 1995

         SITE_ID
SPECIES   1238 1286 1289 1538 1892 1894
  Attenb.    0    0    0    0    0    1

, , WEEKNO = 4, YEAR = 1995

         SITE_ID
SPECIES   1238 1286 1289 1538 1892 1894
  Attenb.    0    1    0    0    0    0

, , WEEKNO = 7, YEAR = 1995

         SITE_ID
SPECIES   1238 1286 1289 1538 1892 1894
  Attenb.    1    0    0    0    1    0
#-------------

weekobs <- totobs[ match( as.numeric(dimnames(xtblspec[ 1, ,  ,])$WEEKNO ) ,totobs$WEEKNO) ,
                  "TOTALOBS"]
#[1] 100 780 189 899

要正确设置特定观察的矩阵,以便矩阵除法正常工作,您需要将 WEEKNO 作为第一个维度:

xtblspec <-  xtabs( ~ WEEKNO +SPECIES+ SITE_ID  + YEAR  , data=dat)
> xtblspec/weekobs
, , SITE_ID = 1238, YEAR = 1995

      SPECIES
WEEKNO     Attenb.
     1 0.000000000
     2 0.000000000
     4 0.000000000
     7 0.001112347

, , SITE_ID = 1286, YEAR = 1995

      SPECIES
WEEKNO     Attenb.
     1 0.000000000
     2 0.000000000
     4 0.005291005
     7 0.000000000

, , SITE_ID = 1289, YEAR = 1995

      SPECIES
WEEKNO     Attenb.
     1 0.010000000
     2 0.000000000
     4 0.000000000
     7 0.000000000

, , SITE_ID = 1538, YEAR = 1995

      SPECIES
WEEKNO     Attenb.
     1 0.010000000
     2 0.000000000
     4 0.000000000
     7 0.000000000

, , SITE_ID = 1892, YEAR = 1995

      SPECIES
WEEKNO     Attenb.
     1 0.000000000
     2 0.000000000
     4 0.000000000
     7 0.001112347

, , SITE_ID = 1894, YEAR = 1995

      SPECIES
WEEKNO     Attenb.
     1 0.000000000
     2 0.001282051
     4 0.000000000
     7 0.000000000
于 2012-07-01T22:11:58.523 回答