6

我对 mysql 有一个看法:

CREATE VIEW
    loggingquarantine_quarantine ( id, mail_id, partition_tag, content, rs, subject, sender, TIME,
    spam_level, size, sid, email ) AS
SELECT
    concat(CAST(`mr`.`mail_id` AS CHAR(255) charset utf8),CAST(`mr`.`partition_tag` AS CHAR(255)
    charset utf8))      AS `id`,
    `mr`.`mail_id`       AS `mail_id`,
    `mr`.`partition_tag` AS `partition_tag`,
    `mr`.`content`      AS `content`,
    `mr`.`rs`           AS `rs`,
    `m`.`subject`       AS `subject`,
    `m`.`from_addr`     AS `sender`,
    `m`.`time_num`      AS `TIME`,
    `m`.`spam_level`    AS `spam_level`,
    `m`.`size`          AS `size`,
    `m`.`sid`           AS `sid`,
    `maddr`.`email`          AS `email`
FROM
    (((`msgrcpt` `mr` JOIN `msgs` `m`
ON
    (
                `m`.`partition_tag` = `mr`.`partition_tag`
        AND
                `m`.`mail_id` = `mr`.`mail_id`
    )
)
JOIN `maddr` maddr
ON
    (
        `mr`.`rid` = `maddr`.`id`
    )
))

当我尝试计算这个视图时,大约需要 13 分钟才能记录 250 万条记录。那慢得令人难以置信。所有字段都有索引。如果我确实计算每张桌子,它不会超过 20 秒。这是mysql解释显示的内容:

mysql> explain SELECT COUNT(*) FROM `loggingquarantine_quarantine`;
+----+-------------+-------+--------+-----------------------------------------------------------------------+-------------------------+---------+-----------------------------------------------------------+---------+-------------+
| id | select_type | table | type   | possible_keys                                                         | key                     | key_len | ref                                                       | rows    | Extra       |
+----+-------------+-------+--------+-----------------------------------------------------------------------+-------------------------+---------+-----------------------------------------------------------+---------+-------------+
|  1 | SIMPLE      | maddr | index  | PRIMARY                                                               | maddr_partition_tag_idx | 5       | NULL                                                      | 1016497 | Using index |
|  1 | SIMPLE      | mr    | ref    | PRIMARY,msgrcpt_idx_rid,msgrcpt_mail_id_idx,msgrcpt_partition_tag_idx | msgrcpt_idx_rid         | 8       | mroute_logquar.maddr.id                                   |       2 | Using index |
|  1 | SIMPLE      | m     | eq_ref | PRIMARY,msgs_mail_id_idx,msgs_partition_tag_idx                       | PRIMARY                 | 22      | mroute_logquar.mr.partition_tag,mroute_logquar.mr.mail_id |       1 | Using index |
+----+-------------+-------+--------+-----------------------------------------------------------------------+-------------------------+---------+-----------------------------------------------------------+---------+-------------+

我怎样才能优化查询/视图,这样计算就不会花费 13 分钟。当前查询有什么问题?

更新。如果我直接在 select 上进行选择计数而不查看它仍然会得到相同的 14 分钟查询。

mysql> select count(1) FROM     (((`msgrcpt` `mr` JOIN `msgs` `m` ON     (                  `m`.`partition_tag` = `mr`.`partition_tag`         AND                 `m`.`mail_id` = `mr`.`mail_id`      ) ) JOIN `maddr` maddr ON     (         `mr`.`rid` = `maddr`.`id`     ) ));

+----------+
| count(1) |
+----------+
|  2582227 |
+----------+
1 row in set (14 min 28.96 sec)

这是我在三个单独的查询中进行计数时的结果:

mysql> select count(1) from msgrcpt;
+----------+
| count(1) |
+----------+
|  2587307 |
+----------+
1 row in set (46.02 sec)

mysql> select count(1) from msgs;
+----------+
| count(1) |
+----------+
|  2421710 |
+----------+
1 row in set (7.77 sec)

mysql> select count(1) from maddr;
+----------+
| count(1) |
+----------+
|   994880 |
+----------+
1 row in set (0.23 sec)

更新 2。

所有表都是 InnoDB。

mysql> SHOW status like 'key_%';                                                                                                                                                                               +------------------------+-------+
| Variable_name          | Value |
+------------------------+-------+
| Key_blocks_not_flushed | 0     |
| Key_blocks_unused      | 26792 |
| Key_blocks_used        | 0     |
| Key_read_requests      | 0     |
| Key_reads              | 0     |
| Key_write_requests     | 0     |
| Key_writes             | 0     |
+------------------------+-------+

msgs 和 msgrcpt 表具有复合主键(对于 msgs 的 mail_id、partation_tag 和对于 msgrpt 的 ( partition_tag, mail_id, rseqnum))。更新说明单表:

mysql> explain select count(1) from msgs;
+----+-------------+-------+-------+---------------+-------------------+---------+------+---------+-------------+
| id | select_type | table | type  | possible_keys | key               | key_len | ref  | rows    | Extra       |
+----+-------------+-------+-------+---------------+-------------------+---------+------+---------+-------------+
|  1 | SIMPLE      | msgs  | index | NULL          | msgs_idx_time_num | 4       | NULL | 2357360 | Using index |
+----+-------------+-------+-------+---------------+-------------------+---------+------+---------+-------------+
1 row in set (0.00 sec)

mysql> explain select count(1) from msgrcpt;
+----+-------------+---------+-------+---------------+----------------+---------+------+---------+-------------+
| id | select_type | table   | type  | possible_keys | key            | key_len | ref  | rows    | Extra       |
+----+-------------+---------+-------+---------------+----------------+---------+------+---------+-------------+
|  1 | SIMPLE      | msgrcpt | index | NULL          | msgrcpt_rs_idx | 3       | NULL | 2620758 | Using index |
+----+-------------+---------+-------+---------------+----------------+---------+------+---------+-------------+
1 row in set (0.00 sec)

mysql> explain select count(1) from maddr;
+----+-------------+-------+-------+---------------+-------------------------+---------+------+--------+-------------+
| id | select_type | table | type  | possible_keys | key                     | key_len | ref  | rows   | Extra       |
+----+-------------+-------+-------+---------------+-------------------------+---------+------+--------+-------------+
|  1 | SIMPLE      | maddr | index | NULL          | maddr_partition_tag_idx | 5       | NULL | 967058 | Using index |
+----+-------------+-------+-------+---------------+-------------------------+---------+------+--------+-------------+
1 row in set (0.00 sec)

更新。为所有表创建表:

mysql> show create table msgrcpt;
| Table   | Create Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             
| msgrcpt | CREATE TABLE `msgrcpt` (
  `partition_tag` int(11) NOT NULL DEFAULT '0',
  `mail_id` varbinary(16) NOT NULL,
  `rseqnum` int(11) NOT NULL DEFAULT '0',
  `rid` bigint(20) unsigned NOT NULL,
  `is_local` char(1) NOT NULL DEFAULT '',
  `content` char(1) NOT NULL DEFAULT '',
  `ds` char(1) NOT NULL,
  `rs` char(1) NOT NULL,
  `bl` char(1) DEFAULT '',
  `wl` char(1) DEFAULT '',
  `bspam_level` float DEFAULT NULL,
  `smtp_resp` varchar(255) DEFAULT '',
  PRIMARY KEY (`partition_tag`,`mail_id`,`rseqnum`),
  KEY `msgrcpt_idx_rid` (`rid`),
  KEY `msgrcpt_mail_id_idx` (`mail_id`),
  KEY `msgrcpt_rs_idx` (`rs`),
  KEY `msgrcpt_ds_idx` (`ds`),
  KEY `msgrcpt_partition_tag_idx` (`partition_tag`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 |

| msgs  | CREATE TABLE `msgs` (
  `partition_tag` int(11) NOT NULL DEFAULT '0',
  `mail_id` varbinary(16) NOT NULL,
  `secret_id` varbinary(16) DEFAULT '',
  `am_id` varchar(20) NOT NULL,
  `time_num` int(10) unsigned NOT NULL,
  `time_iso` char(16) NOT NULL,
  `sid` bigint(20) unsigned NOT NULL,
  `policy` varchar(255) DEFAULT '',
  `client_addr` varchar(255) DEFAULT '',
  `size` int(10) unsigned NOT NULL,
  `originating` char(1) NOT NULL DEFAULT '',
  `content` char(1) DEFAULT NULL,
  `quar_type` char(1) DEFAULT NULL,
  `quar_loc` varbinary(255) DEFAULT '',
  `dsn_sent` char(1) DEFAULT NULL,
  `spam_level` float DEFAULT NULL,
  `message_id` varchar(255) DEFAULT '',
  `from_addr` varchar(255) DEFAULT '',
  `subject` varchar(255) DEFAULT '',
  `host` varchar(255) NOT NULL,
  PRIMARY KEY (`partition_tag`,`mail_id`),
  KEY `msgs_idx_sid` (`sid`),
  KEY `msgs_idx_mess_id` (`message_id`),
  KEY `msgs_idx_time_num` (`time_num`),
  KEY `msgs_mail_id_idx` (`mail_id`),
  KEY `msgs_partition_tag_idx` (`partition_tag`),
  KEY `msgs_content_idx` (`content`),
  FULLTEXT KEY `ft_from_addr` (`from_addr`),
  FULLTEXT KEY `ft_subject` (`subject`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 |

| maddr | CREATE TABLE `maddr` (
  `partition_tag` int(11) DEFAULT '0',
  `id` bigint(20) unsigned NOT NULL AUTO_INCREMENT,
  `email` varbinary(255) NOT NULL,
  `domain` varchar(255) NOT NULL,
  PRIMARY KEY (`id`),
  UNIQUE KEY `part_email` (`partition_tag`,`email`),
  KEY `maddr_email_idx` (`email`),
  KEY `maddr_partition_tag_idx` (`partition_tag`)
) ENGINE=InnoDB AUTO_INCREMENT=3373444 DEFAULT CHARSET=utf8 |

此查询与配置文件:

mysql> SET PROFILING=1; SELECT
Query OK, 0 rows affected (0.00 sec)

    -> count(1)
    -> FROM
    ->     (((`msgrcpt` `mr` JOIN `msgs` `m`
    -> ON
    ->     (
    ->                 `m`.`partition_tag` = `mr`.`partition_tag`
    ->         AND
    ->                 `m`.`mail_id` = `mr`.`mail_id`
    ->     )
    -> )
    -> JOIN `maddr` maddr
    -> ON
    ->     (
    ->         `mr`.`rid` = `maddr`.`id`
    ->     )
    -> )); SHOW PROFILE ALL;

+----------+
| count(1) |
+----------+
|  4279394 |
+----------+
1 row in set (23 min 56.61 sec)

+----------------------+------------+-----------+------------+-------------------+---------------------+--------------+---------------+---------------+-------------------+-------------------+-------------------+-------+-----------------------+------------------+-------------+
| Status               | Duration   | CPU_user  | CPU_system | Context_voluntary | Context_involuntary | Block_ops_in | Block_ops_out | Messages_sent | Messages_received | Page_faults_major | Page_faults_minor | Swaps | Source_function       | Source_file      | Source_line |
+----------------------+------------+-----------+------------+-------------------+---------------------+--------------+---------------+---------------+-------------------+-------------------+-------------------+-------+-----------------------+------------------+-------------+
| starting             |   0.000161 |  0.000000 |   0.000000 |                 0 |                   0 |            0 |             0 |             0 |                 0 |                 0 |                 0 |     0 | NULL                  | NULL             |        NULL |
| checking permissions |   0.000030 |  0.000000 |   0.000000 |                 0 |                   0 |            0 |             0 |             0 |                 0 |                 0 |                 1 |     0 | check_access          | sql_parse.cc     |        5043 |
| checking permissions |   0.000019 |  0.000000 |   0.000000 |                 0 |                   0 |            0 |             0 |             0 |                 0 |                 0 |                 0 |     0 | check_access          | sql_parse.cc     |        5043 |
| checking permissions |   0.000020 |  0.000000 |   0.000000 |                 0 |                   0 |            0 |             0 |             0 |                 0 |                 0 |                 0 |     0 | check_access          | sql_parse.cc     |        5043 |
| Opening tables       |   0.000039 |  0.000000 |   0.000000 |                 0 |                   0 |            0 |             0 |             0 |                 0 |                 0 |                 0 |     0 | open_tables           | sql_base.cc      |        5014 |
| System lock          |   0.000026 |  0.000000 |   0.000000 |                 0 |                   0 |            0 |             0 |             0 |                 0 |                 0 |                 0 |     0 | mysql_lock_tables     | lock.cc          |         304 |
| init                 |   0.000040 |  0.000000 |   0.000000 |                 0 |                   0 |            0 |             0 |             0 |                 0 |                 0 |                 0 |     0 | mysql_select          | sql_select.cc    |        1041 |
| optimizing           |   0.000030 |  0.000000 |   0.000000 |                 0 |                   0 |            0 |             0 |             0 |                 0 |                 0 |                 0 |     0 | optimize              | sql_optimizer.cc |         138 |
| statistics           |   0.000063 |  0.000000 |   0.000000 |                 0 |                   0 |            0 |             0 |             0 |                 0 |                 0 |                 0 |     0 | optimize              | sql_optimizer.cc |         358 |
| preparing            |   0.000032 |  0.000000 |   0.000000 |                 0 |                   0 |            0 |             0 |             0 |                 0 |                 0 |                 0 |     0 | optimize              | sql_optimizer.cc |         470 |
| executing            |   0.000021 |  0.000000 |   0.000000 |                 0 |                   0 |            0 |             0 |             0 |                 0 |                 0 |                 0 |     0 | exec                  | sql_executor.cc  |         137 |
| Sending data         | 999.999999 | 97.014251 |  10.376423 |            681167 |               25822 |      5157072 |       1951032 |             0 |                 0 |                 4 |               277 |     0 | execute               | sql_executor.cc  |         758 |
| end                  |   0.000106 |  0.000000 |   0.000000 |                 0 |                   0 |            0 |             0 |             0 |                 0 |                 0 |                 0 |     0 | mysql_select          | sql_select.cc    |        1071 |
| query end            |   0.000017 |  0.000000 |   0.000000 |                 0 |                   0 |            0 |             0 |             0 |                 0 |                 0 |                 0 |     0 | mysql_execute_command | sql_parse.cc     |        4761 |
| closing tables       |   0.000021 |  0.000000 |   0.000000 |                 0 |                   0 |            0 |             0 |             0 |                 0 |                 0 |                 0 |     0 | mysql_execute_command | sql_parse.cc     |        4809 |
| freeing items        |   0.000030 |  0.000000 |   0.000000 |                 0 |                   0 |            0 |             0 |             0 |                 0 |                 0 |                 0 |     0 | mysql_parse           | sql_parse.cc     |        5997 |
| logging slow query   |   0.000059 |  0.000000 |   0.000000 |                 0 |                   0 |            0 |             8 |             0 |                 0 |                 0 |                 0 |     0 | log_slow_statement    | sql_parse.cc     |        1720 |
| cleaning up          |   0.000019 |  0.000000 |   0.000000 |                 0 |                   0 |            0 |             0 |             0 |                 0 |                 0 |                 0 |     0 | dispatch_command      | sql_parse.cc     |        1654 |
+----------------------+------------+-----------+------------+-------------------+---------------------+--------------+---------------+---------------+-------------------+-------------------+-------------------+-------+-----------------------+------------------+-------------+
18 rows in set (0.02 sec)

表上的索引:

mysql> show index from msgs;
+-------+------------+------------------------+--------------+---------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| Table | Non_unique | Key_name               | Seq_in_index | Column_name   | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |
+-------+------------+------------------------+--------------+---------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| msgs  |          0 | PRIMARY                |            1 | partition_tag | A         |          16 |     NULL | NULL   |      | BTREE      |         |               |
| msgs  |          0 | PRIMARY                |            2 | mail_id       | A         |     4174440 |     NULL | NULL   |      | BTREE      |         |               |
| msgs  |          1 | msgs_idx_sid           |            1 | sid           | A         |     2087220 |     NULL | NULL   |      | BTREE      |         |               |
| msgs  |          1 | msgs_idx_mess_id       |            1 | message_id    | A         |     4174440 |     NULL | NULL   | YES  | BTREE      |         |               |
| msgs  |          1 | msgs_idx_time_num      |            1 | time_num      | A         |     1391480 |     NULL | NULL   |      | BTREE      |         |               |
| msgs  |          1 | msgs_mail_id_idx       |            1 | mail_id       | A         |     4174440 |     NULL | NULL   |      | BTREE      |         |               |
| msgs  |          1 | msgs_partition_tag_idx |            1 | partition_tag | A         |          16 |     NULL | NULL   |      | BTREE      |         |               |
| msgs  |          1 | msgs_content_idx       |            1 | content       | A         |          16 |     NULL | NULL   | YES  | BTREE      |         |               |
| msgs  |          1 | ft_from_addr           |            1 | from_addr     | NULL      |     4174440 |     NULL | NULL   | YES  | FULLTEXT   |         |               |
| msgs  |          1 | ft_subject             |            1 | subject       | NULL      |     4174440 |     NULL | NULL   | YES  | FULLTEXT   |         |               |
+-------+------------+------------------------+--------------+---------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
10 rows in set (0.97 sec)

MSGRCPT

mysql> show index from msgrcpt;
+---------+------------+---------------------------+--------------+---------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| Table   | Non_unique | Key_name                  | Seq_in_index | Column_name   | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |
+---------+------------+---------------------------+--------------+---------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| msgrcpt |          0 | PRIMARY                   |            1 | partition_tag | A         |          29 |     NULL | NULL   |      | BTREE      |         |               |
| msgrcpt |          0 | PRIMARY                   |            2 | mail_id       | A         |     5218535 |     NULL | NULL   |      | BTREE      |         |               |
| msgrcpt |          0 | PRIMARY                   |            3 | rseqnum       | A         |     5218535 |     NULL | NULL   |      | BTREE      |         |               |
| msgrcpt |          1 | msgrcpt_idx_rid           |            1 | rid           | A         |      347902 |     NULL | NULL   |      | BTREE      |         |               |
| msgrcpt |          1 | msgrcpt_mail_id_idx       |            1 | mail_id       | A         |     5218535 |     NULL | NULL   |      | BTREE      |         |               |
| msgrcpt |          1 | msgrcpt_rs_idx            |            1 | rs            | A         |          29 |     NULL | NULL   |      | BTREE      |         |               |
| msgrcpt |          1 | msgrcpt_ds_idx            |            1 | ds            | A         |          29 |     NULL | NULL   |      | BTREE      |         |               |
| msgrcpt |          1 | msgrcpt_partition_tag_idx |            1 | partition_tag | A         |          29 |     NULL | NULL   |      | BTREE      |         |               |
+---------+------------+---------------------------+--------------+---------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
8 rows in set (0.70 sec)

MADDR:

mysql> show index from maddr;
+-------+------------+-------------------------+--------------+---------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| Table | Non_unique | Key_name                | Seq_in_index | Column_name   | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |
+-------+------------+-------------------------+--------------+---------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| maddr |          0 | PRIMARY                 |            1 | id            | A         |     1653970 |     NULL | NULL   |      | BTREE      |         |               |
| maddr |          0 | part_email              |            1 | partition_tag | A         |          19 |     NULL | NULL   | YES  | BTREE      |         |               |
| maddr |          0 | part_email              |            2 | email         | A         |     1653970 |     NULL | NULL   |      | BTREE      |         |               |
| maddr |          1 | maddr_email_idx         |            1 | email         | A         |     1653970 |     NULL | NULL   |      | BTREE      |         |               |
| maddr |          1 | maddr_partition_tag_idx |            1 | partition_tag | A         |          19 |     NULL | NULL   | YES  | BTREE      |         |               |
+-------+------------+-------------------------+--------------+---------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
5 rows in set (0.41 sec)

Inno 数据库缓冲区大小

mysql> SHOW VARIABLES LIKE 'innodb_buffer_pool_size';
+-------------------------+------------+
| Variable_name           | Value      |
+-------------------------+------------+
| innodb_buffer_pool_size | 2147483648 |
+-------------------------+------------+
1 row in set (0.02 sec)
4

9 回答 9

1

您是否尝试过使用一些 STRAIGHT_JOIN 而不仅仅是普通的 JOIN 来改变 JOIN 中使用的表的顺序?有时查询优化器不会为特定查询选择理想的顺序。换句话说,你看到了什么样的表现?

SELECT
  concat(CAST(`mr`.`mail_id` AS CHAR(255) charset utf8),CAST(`mr`.`partition_tag` AS CHAR(255) charset utf8)) AS `id`,
  `mr`.`mail_id`       AS `mail_id`,
  `mr`.`partition_tag` AS `partition_tag`,
  `mr`.`content`      AS `content`,
  `mr`.`rs`           AS `rs`,
  `m`.`subject`       AS `subject`,
  `m`.`from_addr`     AS `sender`,
  `m`.`time_num`      AS `TIME`,
  `m`.`spam_level`    AS `spam_level`,
  `m`.`size`          AS `size`,
  `m`.`sid`           AS `sid`,
  `maddr`.`email`          AS `email`
FROM
  `msgrcpt` `mr`
    STRAIGHT_JOIN `msgs` `m`
      ON
        `m`.`partition_tag` = `mr`.`partition_tag` AND
        `m`.`mail_id` = `mr`.`mail_id`
    STRAIGHT_JOIN `maddr` maddr
      ON
        `mr`.`rid` = `maddr`.`id`

或者,由于您在 msgrcpt 表上使用了一些重型转换和强制转换,如果您强制它在查询中最后加入会发生什么,像这样?

SELECT
  concat(CAST(`mr`.`mail_id` AS CHAR(255) charset utf8),CAST(`mr`.`partition_tag` AS CHAR(255) charset utf8)) AS `id`,
  `mr`.`mail_id`       AS `mail_id`,
  `mr`.`partition_tag` AS `partition_tag`,
  `mr`.`content`      AS `content`,
  `mr`.`rs`           AS `rs`,
  `m`.`subject`       AS `subject`,
  `m`.`from_addr`     AS `sender`,
  `m`.`time_num`      AS `TIME`,
  `m`.`spam_level`    AS `spam_level`,
  `m`.`size`          AS `size`,
  `m`.`sid`           AS `sid`,
  `maddr`.`email`          AS `email`
FROM
  `maddr` `maddr`
    STRAIGHT_JOIN `msgrcpt` `mr`
      ON
        `maddr`.`id` = `mr.`rid`
    STRAIGHT_JOIN `msgs` `m`
      ON
        `m`.`partition_tag` = `mr`.`partition_tag` AND
        `m`.`mail_id` = `mr`.`mail_id`

如果需要,您可以更多地使用订单,可能有一个“魔术订单”会导致您的查询压缩。例如,另一个变体可能是:

FROM
  `msgs` `m`
    STRAIGHT_JOIN `msgrcpt` `mr`
      ON
        `m`.`partition_tag` = `mr`.`partition_tag` AND
        `m`.`mail_id` = `mr`.`mail_id`
    STRAIGHT_JOIN `maddr`
      ON
        `maddr`.`id` = `mr`.`rid`

...等等。

此外,在您的 SELECT 列中,所有这些转换势必会降低您的性能,因为无论您选择多少行,它都必须这样做,这可能很多。您是否考虑过只在已计算的 msgrcpt 表中添加一列,以便不必在查询中执行此操作?如果您不想在代码中考虑额外的列,您可以向数据库添加一个触发器以使用计算值有效地自动更新它。通常,使用这种优化有点矫枉过正,但是当对数百万行执行 SELECT 查询时,它可能就可以解决问题。

编辑: 这是我建议以更改您的 msgrcpt 表。由于它正在运行触发器来计算新列值,因此它会使插入行的速度变慢一点,但我认为它会在加快您尝试运行的查询方面得到回报。标准免责声明适用——如果没有先在测试副本上彻底测试,请勿在生产数据库上运行它!

-- The UPDATE command will probably take some time to run since it's updating
-- millions of rows. Be patient!
ALTER TABLE `msgrcpt` ADD COLUMN `friendly_id` TEXT NULL AFTER `rs`;
UPDATE `msgrcpt` SET
  `friendly_id` = CONCAT(CAST(`mail_id` AS CHAR(255) CHARSET utf8),
    CAST(`partition_tag` AS CHAR(255) CHARSET utf8));
DELIMITER $$
CREATE TRIGGER `trig_calc_id` BEFORE INSERT ON `msgrcpt`
  FOR EACH ROW BEGIN
    SET NEW.`friendly_id` =
      CONCAT(CAST(NEW.`mail_id` AS CHAR(255) CHARSET utf8),
        CAST(NEW.`partition_tag` AS CHAR(255) CHARSET utf8));
  END $$
CREATE TRIGGER `trig_update_id` BEFORE UPDATE ON `msgrcpt`
  FOR EACH ROW BEGIN
    SET NEW.`friendly_id` =
      CONCAT(CAST(NEW.`mail_id` AS CHAR(255) CHARSET utf8),
        CAST(NEW.`partition_tag` AS CHAR(255) CHARSET utf8));
  END $$
DELIMITER ;

现在,不要选择那些乱七八糟的 CONCATed CASTed 东西,只需选择 mr.friendly_id (或您选择命名该列的任何名称)。你的表现应该会好很多。

希望这会有所帮助,让我知道它是怎么回事!

于 2012-07-01T18:28:58.500 回答
0

打扰一下:我看到您的 maddr 表有一个 partition_tag id,但在构成 VIEW 的最后一个 JOIN 中没有使用该分区标签。这是应该的吗?

无论如何,在我看来,您的查询可能会受益于 maddr 上包含 id 和电子邮件的索引。这应该允许直接从索引中提取具有较少 I/O 的电子邮件(评估各种索引的性能可能会有所帮助 - 在我看来,例如单独使用电子邮件字段的索引很少使用,但它取决于您知道而我不知道的工作流程,所以我很可能会弄错。

于 2012-07-06T18:58:49.033 回答
0

好的 :),所以一方面你说 - 我们有 250 万个条目,另一方面(根据你的说法)计数返回 4279394(略高:))。可能的原因(对不起,几乎是凌晨 3 点 :))是 - 您没有指定 msgrcpt 的完整主键(缺少 rseqnum),因此如果优化器选择 maddr 或 msgs 作为主表 - 您最终可能会得到相同的结果msgrcpt 的条目。同样基于 msgrcpt 和 msgs 的计数时间差异,我强烈建议对 msgrcpt 进行碎片整理。我相信在对直接连接进行碎片整理和使用(已经推荐)之后,您的问题将消失(如果没有 - 也许您可以找到一种即时计算的方法 - 无论您需要为 rseqnum / spam_level 计算什么,或者,

于 2012-07-08T06:51:33.707 回答
0

我同意 King Skippus 关于两个元素的观点……STRAIGHT_JOIN 帮助推翻优化器执行计划……以及为您保留预聚合的触发器。但是,如果你想应用 WHERE 子句来限制,你就会被击中。

此外,如果您只关心一个 COUNT,那么最好使用 vyegorov 注释来丢弃所有列。通过让所有其他列强制从所有实际数据页中提取数据。

我会将我的查询呈现为

SELECT STRAIGHT_JOIN COUNT(*)
   FROM
      msgrcpt mr
         JOIN msgs m
            ON mr.mail_id = m.mail_id
           AND mr.partition_tag = m.partition_tag
         JOIN maddr
            ON mr.rid = maddr.id

我知道你提到了索引,但我会通过 (mail_id, partition_tag) Msgs 表索引通过相同的 (mail_id, partition_tag) MAddr 索引 (id) 获得 MsgRcpt 表索引

现在,为什么在索引上有一种方式与另一种方式?我会尝试根据第一个索引字段中的最小聚合来做。不确切知道您的卷基础是什么(邮件 id、分区标签),但可以对客户订单系统进行抽样。您可能在一天内有 10,000 人订购某样东西,但对于给定的人来说,在给定的一天可能会有一两个订单。首先找到那个人和那个单独的日期而不是一天然后找到一个人会更容易。这可能会对尝试首先通过 LARGE 列表,然后是 small 与 small/small 的查询性能产生影响。

通过只做一个 COUNT(*),你就得到了一个计数。不需要原始表中的其他列,并且加载每个页面,因为它只需要索引组件来限定结果中的记录。

如果您确实想要所有数据,那么我将执行上述相同的索引注意事项,但将查询设置为...

CREATE VIEW
    loggingquarantine_quarantine ( id, mail_id, partition_tag, content, rs, subject, sender, TIME,
    spam_level, size, sid, email ) AS

SELECT STRAIGHT_JOIN
      concat(CAST(mr.mail_id AS CHAR(255) charset utf8), 
             CAST(mr.partition_tag AS CHAR(255) charset utf8)) AS `id`,
      mr.mail_id,
      mr.partition_tag,
      mr.content,
      mr.rs,
      m.subject,
      m.from_addr AS sender,
      m.time_num AS `TIME`,
      m.spam_level,
      m.size,
      m.sid,
      maddr.email
   FROM
      msgrcpt mr
         JOIN msgs m
            ON mr.mail_id = m.mail_id
           AND mr.partition_tag = m.partition_tag
         JOIN maddr
            ON mr.rid = maddr.id
于 2012-07-03T14:05:26.937 回答
0

视图查询本身以及代码中视图的使用可能会影响性能。有关更多信息,请阅读文章 - MySQL VIEW 作为性能麻烦制造者

解决方法:

  • 执行简单查询,不使用视图。
  • 如果您不想在另一个 SELECT 语句中将此视图用作数据集,那么您可以尝试创建存储过程而不是视图。
于 2012-07-04T06:42:15.057 回答
0

加入需要 BIG mysql 负载。以我的经验,创建临时表并从中选择数据,提高数据库查询速度。

这是我的代码,代码 2 显示 100 倍的速度。您可以更改查询代码,如代码 2 样式。对于大型复杂的数据库查询,使用临时表提高数据库查询速度。

  1. 制作临时表使查询变得简单并减少 mysql 数据库负载。
  2. 从临时表中选择数据也需要较少的数据库负载。

代码 1

    $sql = " select distinct wr_parent from $write_table where $sql_search ";
    $result = sql_query($sql);
    $total_count = mysql_num_rows($result);

代码 2

    $sql = " select wr_parent from $write_table where $sql_search ";
    $sql_tmp = " create TEMPORARY table list_tmp_count as $sql ";
    $sql_ord = " select distinct wr_parent from list_tmp_count ";

    @mysql_query($sql_tmp) or die("<p>$sql_tmp<p>" . mysql_errno() . " : " .  mysql_error() . "<p>error file : $_SERVER[PHP_SELF]");
    $result = @mysql_query($sql_ord) or die("<p>$sql_ord<p>" . mysql_errno() . " : " .  mysql_error() . "<p>error file : $_SERVER[PHP_SELF]");
    $total_count = mysql_num_rows($result);

mysql临时表

如果你临时表在 tempfs(内存区域)中的位置速度也翻了一番。

于 2012-07-08T07:50:07.523 回答
0

数据库执行表连接的方法有多种。MySQL 仅使用嵌套循环连接,如输出部分EXPLAIN所述。嵌套循环的工作方式是理解为什么这个查询需要这么多时间的关键。

根据您的EXPLAIN输出,MySQL 首先扫描maddr表,因此您有一个1 016 497执行循环。在每个执行数据库内部,对一个小表执行两次索引扫描。即使成本:

  • 启动新的索引扫描;
  • 在索引中搜索条目;
  • 完成扫描

真的很小(因为数据很可能会在执行这么多的情况下被缓存),无论如何都需要几毫秒。然后你乘以2, 因为msgrcptmsgs都在内部被扫描。然后乘以外部循环的执行次数,这给了你相当长的时间。

您的视图定义对返回的数据没有过滤器,因此必须扫描和连接所有表。鉴于嵌套循环的工作方式,很明显,当外部查询包含最少数量的循环时,变体是性能最好的变体。考虑到所有表的大小,索引扫描(根据EXPLAIN输出对索引扫描所有 3 个表)将检查:

  • msgrcpt: 日志2 (2587307) + 1 = 22 页,
  • msgs: 日志2 (2421710) + 1 = 22 页和
  • maddr: log 2 (994880) + 1 = 每次扫描 21 页

最坏的情况下。这表明即使使用索引扫描,表扫描时间也是相当的并且非常重要。不过,maddr它更小,这就是 MySQL 选择首先扫描它的原因。

在我看来,数据库选择的计划是给定情况下最好的计划。而且 MySQL 仅支持嵌套循环连接这一事实没有提供优化的可能性,因为外部循环已经是最小的循环。此处可能使用了哈希连接以获得更好的性能。


那么,如何让事情在这种情况下发挥作用呢?

我建议只使用视图来查询带有过滤器的数据,这将使 MySQL 有更多机会优化查询并快速返回数据。

为了获得行数,我会进行估计(如果可以接受的话),计算count(*)每个单独的表并取最大的一个。

另一种方法是重新设计模式,使其中一个表成为主表,以便视图中的行数应始终与主表中的行数匹配。我不确定如何使用给定的设计来做到这一点,抱歉。

如果没有一个选项是可接受的,不幸的是,我看不到其他方法来优化这个查询。

于 2012-07-01T21:54:20.630 回答
0

尝试使用 COUNT(*) insted COUNT(1) 因为 MySQL 优化器有很多错误 http://www.mysqlperformanceblog.com/2007/04/10/count-vs-countcol/

于 2012-07-05T13:45:44.957 回答
-1

写入一个主键列count()以使其更快。likecount(id)

于 2012-07-07T13:21:47.973 回答