我为这篇文章提供了一个较晚的答案,以将其从未答复的列表中删除。
您基本上是在使用共享内存在 3D 中实现 boxcar 过滤器。除了上面评论中已经提到的那些之外,我发现使用共享内存时您没有体验到加速的两个可能原因:
- 共享内存加载和存储没有合并;
- 您没有考虑需要大量线程协作的情况,因为 boxcar 大小为
2
.
下面,我提供了一个代码来比较仅使用全局内存和共享内存的情况。该代码是对 Robert Crovella 在3d CUDA kernel indexing for image filtering 上发布的代码的修改?.
此代码的结果,用于DATASIZE_X x DATASIZE_Y x DATASIZE_Z = 1024 x 1024 x 64
:
GT 540M 机箱
BOXCAR_SIZE GLOBAL SHARED
2 360ms 342ms
4 1292ms 583ms
6 3675ms 1166ms
开普勒 K20c 机箱
BOXCAR_SIZE GLOBAL SHARED
2 8ms 16ms
4 40ms 33ms
6 142ms 102ms
编码:
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define BOXCAR_SIZE 6
#define DATASIZE_X 1024
#define DATASIZE_Y 1024
#define DATASIZE_Z 64
#define BLOCKSIZE_X 8
#define BLOCKSIZE_Y 8
#define BLOCKSIZE_Z 8
/********************/
/* CUDA ERROR CHECK */
/********************/
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
/*****************************/
/* BOXCAR WITH SHARED MEMORY */
/*****************************/
__global__ void boxcar_shared(int* __restrict__ output, const int* __restrict__ input)
{
__shared__ int smem[(BLOCKSIZE_Z + (BOXCAR_SIZE-1))][(BLOCKSIZE_Y + (BOXCAR_SIZE-1))][(BLOCKSIZE_X + (BOXCAR_SIZE-1))];
int idx = blockIdx.x*blockDim.x + threadIdx.x;
int idy = blockIdx.y*blockDim.y + threadIdx.y;
int idz = blockIdx.z*blockDim.z + threadIdx.z;
if ((idx < (DATASIZE_X+BOXCAR_SIZE-1)) && (idy < (DATASIZE_Y+BOXCAR_SIZE-1)) && (idz < (DATASIZE_Z+BOXCAR_SIZE-1))){
smem[threadIdx.z][threadIdx.y][threadIdx.x]=input[idz*(DATASIZE_X+BOXCAR_SIZE-1)*(DATASIZE_Y+BOXCAR_SIZE-1) + idy*(DATASIZE_X+BOXCAR_SIZE-1) + idx];
if ((threadIdx.z > (BLOCKSIZE_Z - BOXCAR_SIZE)) && (idz < DATASIZE_Z))
smem[threadIdx.z + (BOXCAR_SIZE-1)][threadIdx.y][threadIdx.x] = input[(idz + (BOXCAR_SIZE-1))*(DATASIZE_X+BOXCAR_SIZE-1)*(DATASIZE_Y+BOXCAR_SIZE-1) + idy*(DATASIZE_X+BOXCAR_SIZE-1) + idx];
if ((threadIdx.y > (BLOCKSIZE_Y - BOXCAR_SIZE)) && (idy < DATASIZE_Y))
smem[threadIdx.z][threadIdx.y + (BOXCAR_SIZE-1)][threadIdx.x] = input[idz*(DATASIZE_X+BOXCAR_SIZE-1)*(DATASIZE_Y+BOXCAR_SIZE-1) + (idy+(BOXCAR_SIZE-1))*(DATASIZE_X+BOXCAR_SIZE-1) + idx];
if ((threadIdx.x > (BLOCKSIZE_X - BOXCAR_SIZE)) && (idx < DATASIZE_X))
smem[threadIdx.z][threadIdx.y][threadIdx.x + (BOXCAR_SIZE-1)] = input[idz*(DATASIZE_X+BOXCAR_SIZE-1)*(DATASIZE_Y+BOXCAR_SIZE-1) + idy*(DATASIZE_X+BOXCAR_SIZE-1) + (idx+(BOXCAR_SIZE-1))];
if ((threadIdx.z > (BLOCKSIZE_Z - BOXCAR_SIZE)) && (threadIdx.y > (BLOCKSIZE_Y - BOXCAR_SIZE)) && (idz < DATASIZE_Z) && (idy < DATASIZE_Y))
smem[threadIdx.z + (BOXCAR_SIZE-1)][threadIdx.y + (BOXCAR_SIZE-1)][threadIdx.x] = input[(idz+(BOXCAR_SIZE-1))*(DATASIZE_X+BOXCAR_SIZE-1)*(DATASIZE_Y+BOXCAR_SIZE-1) + (idy+(BOXCAR_SIZE-1))*(DATASIZE_X+BOXCAR_SIZE-1) + idx];
if ((threadIdx.z > (BLOCKSIZE_Z - BOXCAR_SIZE)) && (threadIdx.x > (BLOCKSIZE_X - BOXCAR_SIZE)) && (idz < DATASIZE_Z) && (idx < DATASIZE_X))
smem[threadIdx.z + (BOXCAR_SIZE-1)][threadIdx.y][threadIdx.x + (BOXCAR_SIZE-1)] = input[(idz+(BOXCAR_SIZE-1))*(DATASIZE_X+BOXCAR_SIZE-1)*(DATASIZE_Y+BOXCAR_SIZE-1) + idy*(DATASIZE_X+BOXCAR_SIZE-1) + (idx+(BOXCAR_SIZE-1))];
if ((threadIdx.y > (BLOCKSIZE_Y - BOXCAR_SIZE)) && (threadIdx.x > (BLOCKSIZE_X - BOXCAR_SIZE)) && (idy < DATASIZE_Y) && (idx < DATASIZE_X))
smem[threadIdx.z][threadIdx.y + (BOXCAR_SIZE-1)][threadIdx.x + (BOXCAR_SIZE-1)] = input[idz*(DATASIZE_X+BOXCAR_SIZE-1)*(DATASIZE_Y+BOXCAR_SIZE-1) + (idy+(BOXCAR_SIZE-1))*(DATASIZE_X+BOXCAR_SIZE-1) + (idx+(BOXCAR_SIZE-1))];
if ((threadIdx.z > (BLOCKSIZE_Z - BOXCAR_SIZE)) && (threadIdx.y > (BLOCKSIZE_Y - BOXCAR_SIZE)) && (threadIdx.x > (BLOCKSIZE_X - BOXCAR_SIZE)) && (idz < DATASIZE_Z) && (idy < DATASIZE_Y) && (idx < DATASIZE_X))
smem[threadIdx.z+(BOXCAR_SIZE-1)][threadIdx.y+(BOXCAR_SIZE-1)][threadIdx.x+(BOXCAR_SIZE-1)] = input[(idz+(BOXCAR_SIZE-1))*(DATASIZE_X+BOXCAR_SIZE-1)*(DATASIZE_Y+BOXCAR_SIZE-1) + (idy+(BOXCAR_SIZE-1))*(DATASIZE_X+BOXCAR_SIZE-1) + (idx+(BOXCAR_SIZE-1))];
}
__syncthreads();
if ((idx < DATASIZE_X) && (idy < DATASIZE_Y) && (idz < DATASIZE_Z)){
int temp = 0;
for (int i=0; i<BOXCAR_SIZE; i++)
for (int j=0; j<BOXCAR_SIZE; j++)
for (int k=0; k<BOXCAR_SIZE; k++)
temp = temp + smem[threadIdx.z + i][threadIdx.y + j][threadIdx.x + k];
output[idz*DATASIZE_X*DATASIZE_Y + idy*DATASIZE_X + idx] = temp;
}
}
/********************************/
/* BOXCAR WITHOUT SHARED MEMORY */
/********************************/
__global__ void boxcar(int* __restrict__ output, const int* __restrict__ input)
{
int idx = blockIdx.x*blockDim.x + threadIdx.x;
int idy = blockIdx.y*blockDim.y + threadIdx.y;
int idz = blockIdx.z*blockDim.z + threadIdx.z;
if ((idx < DATASIZE_X) && (idy < DATASIZE_Y) && (idz < DATASIZE_Z)){
int temp = 0;
for (int i=0; i<BOXCAR_SIZE; i++)
for (int j=0; j<BOXCAR_SIZE; j++)
for (int k=0; k<BOXCAR_SIZE; k++)
temp = temp + input[(k+idz)*(DATASIZE_X+BOXCAR_SIZE-1)*(DATASIZE_Y+BOXCAR_SIZE-1) + (j+idy)*(DATASIZE_X+BOXCAR_SIZE-1) + (i+idx)];
output[idz*DATASIZE_X*DATASIZE_Y + idy*DATASIZE_X + idx] = temp;
}
}
/********/
/* MAIN */
/********/
int main(void)
{
int i, j, k, u, v, w, temp;
// --- these are just for timing
clock_t t0, t1, t2, t3;
double t1sum=0.0f;
double t2sum=0.0f;
double t3sum=0.0f;
const int nx = DATASIZE_X;
const int ny = DATASIZE_Y;
const int nz = DATASIZE_Z;
const int wx = BOXCAR_SIZE;
const int wy = BOXCAR_SIZE;
const int wz = BOXCAR_SIZE;
// --- start timing
t0 = clock();
// --- CPU memory allocations
int *input, *output, *ref_output;
if ((input = (int*)malloc(((nx+(wx-1))*(ny+(wy-1))*(nz+(wz-1)))*sizeof(int))) == 0) { fprintf(stderr, "malloc Fail \n"); return 1; }
if ((output = (int*)malloc((nx*ny*nz)*sizeof(int))) == 0) { fprintf(stderr, "malloc Fail \n"); return 1; }
if ((ref_output = (int*)malloc((nx*ny*nz)*sizeof(int))) == 0) { fprintf(stderr, "malloc Fail \n"); return 1; }
// --- Data generation
srand(time(NULL));
for(int i=0; i<(nz+(wz-1)); i++)
for(int j=0; j<(ny+(wy-1)); j++)
for (int k=0; k<(nx+(wx-1)); k++)
input[i*(ny+(wy-1))*(nx+(wx-1))+j*(nx+(wx-1))+k] = rand();
t1 = clock();
// --- Allocate GPU space for data and results
int *d_output, *d_input; // storage for input
gpuErrchk(cudaMalloc((void**)&d_input, (((nx+(wx-1))*(ny+(wy-1))*(nz+(wz-1)))*sizeof(int))));
gpuErrchk(cudaMalloc((void**)&d_output, ((nx*ny*nz)*sizeof(int))));
// --- Copy data from GPU to CPU
gpuErrchk(cudaMemcpy(d_input, input, (((nx+(wx-1))*(ny+(wy-1))*(nz+(wz-1)))*sizeof(int)), cudaMemcpyHostToDevice));
const dim3 blockSize(BLOCKSIZE_X, BLOCKSIZE_Y, BLOCKSIZE_Z);
const dim3 gridSize(((DATASIZE_X+BLOCKSIZE_X-1)/BLOCKSIZE_X), ((DATASIZE_Y+BLOCKSIZE_Y-1)/BLOCKSIZE_Y), ((DATASIZE_Z+BLOCKSIZE_Z-1)/BLOCKSIZE_Z));
float time;
cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start, 0);
boxcar_shared<<<gridSize,blockSize>>>(d_output, d_input);
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaDeviceSynchronize());
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&time, start, stop);
printf("Elapsed time: %3.4f ms \n", time);
// --- Copy result from GPU to CPU
gpuErrchk(cudaMemcpy(output, d_output, ((nx*ny*nz)*sizeof(int)), cudaMemcpyDeviceToHost));
t2 = clock();
t2sum = ((double)(t2-t1))/CLOCKS_PER_SEC;
printf(" Device compute took %3.2f seconds. Beginning host compute.\n", t2sum);
// --- Host-side computations
for (int u=0; u<nz; u++)
for (int v=0; v<ny; v++)
for (int w=0; w<nx; w++){
temp = 0;
for (int i=0; i<wz; i++)
for (int j=0; j<wy; j++)
for (int k=0; k<wx; k++)
temp = temp + input[(i+u)*(ny+(wy-1))*(nx+(wx-1))+(j+v)*(nx+(wx-1))+(k+w)];
ref_output[u*ny*nx + v*nx + w] = temp;
}
t3 = clock();
t3sum = ((double)(t3-t2))/CLOCKS_PER_SEC;
printf(" Host compute took %3.2f seconds. Comparing results.\n", t3sum);
// --- Check CPU and GPU results
for (int i=0; i<nz; i++)
for (int j=0; j<ny; j++)
for (int k=0; k<nx; k++)
if (ref_output[i*ny*nx + j*nx + k] != output[i*ny*nx + j*nx + k]) {
printf("Mismatch at x= %d, y= %d, z= %d Host= %d, Device = %d\n", i, j, k, ref_output[i*ny*nx + j*nx + k], output[i*ny*nx + j*nx + k]);
return 1;
}
printf("Results match!\n");
// --- Freeing memory
free(input);
free(output);
gpuErrchk(cudaFree(d_input));
gpuErrchk(cudaFree(d_output));
cudaDeviceReset();
return 0;
}