1

我正在尝试查看对象中问题的共享内存的使用是否可以改善执行时间并导致一些加速:

不使用共享内存的内核函数

__global__ void  3dc(const int nx, const int ny, const int nz, const float* in1, 
    const float* in2, const float* in3, const float* in4, float* out)
{
    int i, j, k;

    int tidx = threadIdx.x + blockIdx.x*blockDim.x;

    if(tidx < (nx)*(ny)*(nz)){
        k = tidx/((nx)*(ny));
        j = (tidx - k*(nx)*(ny))/(nx);
        i = tidx - k*(nx)*(ny) - j*(nx);

        out[i + nx*j + nx*ny*k] = 
            in1[i     + nx*j     + nx*ny*k    ]+
            in1[(i+1) + nx*j     + nx*ny*k    ]+
            in1[(i+1) + nx*(j+1) + nx*ny*k    ]+
            in1[i     + nx*(j+1) + nx*ny*k    ]+
            in1[i     + nx*j     + nx*ny*(k+1)]+
            in1[(i+1) + nx*j     + nx*ny*(k+1)]+
            in1[(i+1) + nx*(j+1) + nx*ny*(k+1)]+
            in1[i     + nx*(j+1) + nx*ny*(k+1)]+
            in2[i     + nx*j     + nx*ny*k    ]+
            in2[(i+1) + nx*j     + nx*ny*k    ]+
            in2[(i+1) + nx*(j+1) + nx*ny*k    ]+
            in2[i     + nx*(j+1) + nx*ny*k    ]+
            in2[i     + nx*j     + nx*ny*(k+1)]+
            in2[(i+1) + nx*j     + nx*ny*(k+1)]+
            in2[(i+1) + nx*(j+1) + nx*ny*(k+1)]+
            in2[i     + nx*(j+1) + nx*ny*(k+1)]+
            in3[i     + nx*j     + nx*ny*k    ]+
            in3[(i+1) + nx*j     + nx*ny*k    ]+
            in3[(i+1) + nx*(j+1) + nx*ny*k    ]+
            in3[i     + nx*(j+1) + nx*ny*k    ]+
            in3[i     + nx*j     + nx*ny*(k+1)]+
            in3[(i+1) + nx*j     + nx*ny*(k+1)]+
            in3[(i+1) + nx*(j+1) + nx*ny*(k+1)]+
            in3[i     + nx*(j+1) + nx*ny*(k+1)]+
            in4[i     + nx*j     + nx*ny*k    ]+
            in4[(i+1) + nx*j     + nx*ny*k    ]+
            in4[(i+1) + nx*(j+1) + nx*ny*k    ]+
            in4[i     + nx*(j+1) + nx*ny*k    ]+
            in4[i     + nx*j     + nx*ny*(k+1)]+
            in4[(i+1) + nx*j     + nx*ny*(k+1)]+
            in4[(i+1) + nx*(j+1) + nx*ny*(k+1)]+
            in4[i     + nx*(j+1) + nx*ny*(k+1)];
    } 
} // 3dc

使用共享内存的内核函数

__global__ void 3d_shared_memory(const int nx, const int ny, const int nz, const float* in1, const float* in2, const float* in3, const float* in4, float* out){
    int idx = blockIdx.x*blockDim.x + threadIdx.x;
    int idy = blockIdx.y*blockDim.y + threadIdx.y;
    int idz = blockIdx.z*blockDim.z + threadIdx.z;

    __shared__ float smem1[16][16][4];
    __shared__ float smem2[16][16][4];
    __shared__ float smem3[16][16][4];
    __shared__ float smem4[16][16][4];

    if ((idx < nx) && (idy < ny) && (idz < nz)){
        smem1[threadIdx.x][threadIdx.y][threadIdx.z] = in1[idz * nx * ny + idy * nx + idx];
        smem2[threadIdx.x][threadIdx.y][threadIdx.z] = in2[idz * nx * ny + idy * nx + idx];
        smem3[threadIdx.x][threadIdx.y][threadIdx.z] = in3[idz * nx * ny + idy * nx + idx];
        smem4[threadIdx.x][threadIdx.y][threadIdx.z] = in4[idz * nx * ny + idy * nx + idx];                        
        __syncthreads();

        for(int k = 0; k < 3; k++){
            for(int j = 0; j < 15; j++){
                for(int i = 0; i < 15; i++){
                    out[idz * nx * ny + idy * nx + idx] = smem1[i][j][k] + smem1[i+1][j][k] + smem1[i+1][j+1][k] + smem1[i][j+1][k] + smem1[i][j][k+1] + smem1[i+1][j][k+1] + smem1[i+1][j+1][k+1] + smem1[i][j+1][k+1] +
                        smem2[i][j][k] + smem2[i+1][j][k] + smem2[i+1][j+1][k] + smem2[i][j+1][k] + smem2[i][j][k+1] + smem2[i+1][j][k+1] + smem2[i+1][j+1][k+1] + smem2[i][j+1][k+1] +
                        smem3[i][j][k] + smem3[i+1][j][k] + smem3[i+1][j+1][k] + smem3[i][j+1][k] + smem3[i][j][k+1] + smem3[i+1][j][k+1] + smem3[i+1][j+1][k+1] + smem3[i][j+1][k+1] +
                        smem4[i][j][k] + smem4[i+1][j][k] + smem4[i+1][j+1][k] + smem4[i][j+1][k] + smem4[i][j][k+1] + smem4[i+1][j][k+1] + smem4[i+1][j+1][k+1] + smem4[i][j+1][k+1];
                }
            }
        }

    }

} //3d_shared_memory example

共享内存代码总是比较慢。有没有更好的方法来利用共享内存来解决这个问题?提前感谢您的建议。

4

1 回答 1

2

我为这篇文章提供了一个较晚的答案,以将其从未答复的列表中删除。

您基本上是在使用共享内存在 3D 中实现 boxcar 过滤器。除了上面评论中已经提到的那些之外,我发现使用共享内存时您没有体验到加速的两个可能原因:

  1. 共享内存加载和存储没有合并;
  2. 您没有考虑需要大量线程协作的情况,因为 boxcar 大小为2.

下面,我提供了一个代码来比较仅使用全局内存和共享内存的情况。该代码是对 Robert Crovella 在3d CUDA kernel indexing for image filtering 上发布的代码的修改?.

此代码的结果,用于DATASIZE_X x DATASIZE_Y x DATASIZE_Z = 1024 x 1024 x 64

GT 540M 机箱

BOXCAR_SIZE            GLOBAL            SHARED
     2                  360ms             342ms
     4                 1292ms             583ms
     6                 3675ms            1166ms

开普勒 K20c 机箱

BOXCAR_SIZE            GLOBAL            SHARED
     2                    8ms              16ms
     4                   40ms              33ms
     6                  142ms             102ms

编码:

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#define BOXCAR_SIZE 6

#define DATASIZE_X 1024
#define DATASIZE_Y 1024
#define DATASIZE_Z 64

#define BLOCKSIZE_X 8
#define BLOCKSIZE_Y 8
#define BLOCKSIZE_Z 8

/********************/
/* CUDA ERROR CHECK */
/********************/
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, char *file, int line, bool abort=true)
{
    if (code != cudaSuccess) 
    {
        fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
        if (abort) exit(code);
    }
}

/*****************************/
/* BOXCAR WITH SHARED MEMORY */
/*****************************/
__global__ void boxcar_shared(int* __restrict__ output, const int* __restrict__ input)
{
    __shared__ int smem[(BLOCKSIZE_Z + (BOXCAR_SIZE-1))][(BLOCKSIZE_Y + (BOXCAR_SIZE-1))][(BLOCKSIZE_X + (BOXCAR_SIZE-1))];

    int idx = blockIdx.x*blockDim.x + threadIdx.x;
    int idy = blockIdx.y*blockDim.y + threadIdx.y;
    int idz = blockIdx.z*blockDim.z + threadIdx.z;

    if ((idx < (DATASIZE_X+BOXCAR_SIZE-1)) && (idy < (DATASIZE_Y+BOXCAR_SIZE-1)) && (idz < (DATASIZE_Z+BOXCAR_SIZE-1))){

        smem[threadIdx.z][threadIdx.y][threadIdx.x]=input[idz*(DATASIZE_X+BOXCAR_SIZE-1)*(DATASIZE_Y+BOXCAR_SIZE-1) + idy*(DATASIZE_X+BOXCAR_SIZE-1) + idx];

    if ((threadIdx.z > (BLOCKSIZE_Z - BOXCAR_SIZE)) && (idz < DATASIZE_Z))
        smem[threadIdx.z + (BOXCAR_SIZE-1)][threadIdx.y][threadIdx.x] = input[(idz + (BOXCAR_SIZE-1))*(DATASIZE_X+BOXCAR_SIZE-1)*(DATASIZE_Y+BOXCAR_SIZE-1) + idy*(DATASIZE_X+BOXCAR_SIZE-1) + idx];

    if ((threadIdx.y > (BLOCKSIZE_Y - BOXCAR_SIZE)) && (idy < DATASIZE_Y))
        smem[threadIdx.z][threadIdx.y + (BOXCAR_SIZE-1)][threadIdx.x] = input[idz*(DATASIZE_X+BOXCAR_SIZE-1)*(DATASIZE_Y+BOXCAR_SIZE-1) + (idy+(BOXCAR_SIZE-1))*(DATASIZE_X+BOXCAR_SIZE-1) + idx];

    if ((threadIdx.x > (BLOCKSIZE_X - BOXCAR_SIZE)) && (idx < DATASIZE_X))
        smem[threadIdx.z][threadIdx.y][threadIdx.x + (BOXCAR_SIZE-1)] = input[idz*(DATASIZE_X+BOXCAR_SIZE-1)*(DATASIZE_Y+BOXCAR_SIZE-1) + idy*(DATASIZE_X+BOXCAR_SIZE-1) + (idx+(BOXCAR_SIZE-1))];

    if ((threadIdx.z > (BLOCKSIZE_Z - BOXCAR_SIZE)) && (threadIdx.y > (BLOCKSIZE_Y - BOXCAR_SIZE)) && (idz < DATASIZE_Z) && (idy < DATASIZE_Y))
        smem[threadIdx.z + (BOXCAR_SIZE-1)][threadIdx.y + (BOXCAR_SIZE-1)][threadIdx.x] = input[(idz+(BOXCAR_SIZE-1))*(DATASIZE_X+BOXCAR_SIZE-1)*(DATASIZE_Y+BOXCAR_SIZE-1) + (idy+(BOXCAR_SIZE-1))*(DATASIZE_X+BOXCAR_SIZE-1) + idx];

    if ((threadIdx.z > (BLOCKSIZE_Z - BOXCAR_SIZE)) && (threadIdx.x > (BLOCKSIZE_X - BOXCAR_SIZE)) && (idz < DATASIZE_Z) && (idx < DATASIZE_X))
        smem[threadIdx.z + (BOXCAR_SIZE-1)][threadIdx.y][threadIdx.x + (BOXCAR_SIZE-1)] = input[(idz+(BOXCAR_SIZE-1))*(DATASIZE_X+BOXCAR_SIZE-1)*(DATASIZE_Y+BOXCAR_SIZE-1) + idy*(DATASIZE_X+BOXCAR_SIZE-1) + (idx+(BOXCAR_SIZE-1))];

    if ((threadIdx.y > (BLOCKSIZE_Y - BOXCAR_SIZE)) && (threadIdx.x > (BLOCKSIZE_X - BOXCAR_SIZE)) && (idy < DATASIZE_Y) && (idx < DATASIZE_X))
        smem[threadIdx.z][threadIdx.y + (BOXCAR_SIZE-1)][threadIdx.x + (BOXCAR_SIZE-1)] = input[idz*(DATASIZE_X+BOXCAR_SIZE-1)*(DATASIZE_Y+BOXCAR_SIZE-1) + (idy+(BOXCAR_SIZE-1))*(DATASIZE_X+BOXCAR_SIZE-1) + (idx+(BOXCAR_SIZE-1))];

    if ((threadIdx.z > (BLOCKSIZE_Z - BOXCAR_SIZE)) && (threadIdx.y > (BLOCKSIZE_Y - BOXCAR_SIZE)) && (threadIdx.x > (BLOCKSIZE_X - BOXCAR_SIZE)) && (idz < DATASIZE_Z) && (idy < DATASIZE_Y) && (idx < DATASIZE_X))
        smem[threadIdx.z+(BOXCAR_SIZE-1)][threadIdx.y+(BOXCAR_SIZE-1)][threadIdx.x+(BOXCAR_SIZE-1)] = input[(idz+(BOXCAR_SIZE-1))*(DATASIZE_X+BOXCAR_SIZE-1)*(DATASIZE_Y+BOXCAR_SIZE-1) + (idy+(BOXCAR_SIZE-1))*(DATASIZE_X+BOXCAR_SIZE-1) + (idx+(BOXCAR_SIZE-1))];
}

    __syncthreads();

    if ((idx < DATASIZE_X) && (idy < DATASIZE_Y) && (idz < DATASIZE_Z)){

        int temp = 0;

        for (int i=0; i<BOXCAR_SIZE; i++)
            for (int j=0; j<BOXCAR_SIZE; j++)
                for (int k=0; k<BOXCAR_SIZE; k++)
                    temp = temp + smem[threadIdx.z + i][threadIdx.y + j][threadIdx.x + k];

        output[idz*DATASIZE_X*DATASIZE_Y + idy*DATASIZE_X + idx] = temp;
    }
}

/********************************/
/* BOXCAR WITHOUT SHARED MEMORY */
/********************************/
__global__ void boxcar(int* __restrict__ output, const int* __restrict__ input)
{
    int idx = blockIdx.x*blockDim.x + threadIdx.x;
    int idy = blockIdx.y*blockDim.y + threadIdx.y;
    int idz = blockIdx.z*blockDim.z + threadIdx.z;

    if ((idx < DATASIZE_X) && (idy < DATASIZE_Y) && (idz < DATASIZE_Z)){

        int temp = 0;
        for (int i=0; i<BOXCAR_SIZE; i++)
            for (int j=0; j<BOXCAR_SIZE; j++)
                for (int k=0; k<BOXCAR_SIZE; k++)
                    temp = temp + input[(k+idz)*(DATASIZE_X+BOXCAR_SIZE-1)*(DATASIZE_Y+BOXCAR_SIZE-1) + (j+idy)*(DATASIZE_X+BOXCAR_SIZE-1) + (i+idx)];

        output[idz*DATASIZE_X*DATASIZE_Y + idy*DATASIZE_X + idx] = temp;
    }
}

/********/
/* MAIN */
/********/
int main(void)
{
    int i, j, k, u, v, w, temp;

    // --- these are just for timing
    clock_t t0, t1, t2, t3;
    double t1sum=0.0f;
    double t2sum=0.0f;
    double t3sum=0.0f;

    const int nx = DATASIZE_X;
    const int ny = DATASIZE_Y;
    const int nz = DATASIZE_Z;

    const int wx = BOXCAR_SIZE;
    const int wy = BOXCAR_SIZE;
    const int wz = BOXCAR_SIZE;

    // --- start timing
    t0 = clock();

    // --- CPU memory allocations
    int *input, *output, *ref_output; 
    if ((input  = (int*)malloc(((nx+(wx-1))*(ny+(wy-1))*(nz+(wz-1)))*sizeof(int))) == 0)    { fprintf(stderr, "malloc Fail \n"); return 1; }
    if ((output = (int*)malloc((nx*ny*nz)*sizeof(int))) == 0)                               { fprintf(stderr, "malloc Fail \n"); return 1; }
    if ((ref_output = (int*)malloc((nx*ny*nz)*sizeof(int))) == 0)                               { fprintf(stderr, "malloc Fail \n"); return 1; }

    // --- Data generation
    srand(time(NULL));
    for(int i=0; i<(nz+(wz-1)); i++)
        for(int j=0; j<(ny+(wy-1)); j++)
            for (int k=0; k<(nx+(wx-1)); k++)
                input[i*(ny+(wy-1))*(nx+(wx-1))+j*(nx+(wx-1))+k] = rand(); 

    t1 = clock();

    // --- Allocate GPU space for data and results
    int *d_output, *d_input;  // storage for input
    gpuErrchk(cudaMalloc((void**)&d_input, (((nx+(wx-1))*(ny+(wy-1))*(nz+(wz-1)))*sizeof(int))));
    gpuErrchk(cudaMalloc((void**)&d_output, ((nx*ny*nz)*sizeof(int))));

    // --- Copy data from GPU to CPU
    gpuErrchk(cudaMemcpy(d_input, input, (((nx+(wx-1))*(ny+(wy-1))*(nz+(wz-1)))*sizeof(int)), cudaMemcpyHostToDevice));

    const dim3 blockSize(BLOCKSIZE_X, BLOCKSIZE_Y, BLOCKSIZE_Z);
    const dim3 gridSize(((DATASIZE_X+BLOCKSIZE_X-1)/BLOCKSIZE_X), ((DATASIZE_Y+BLOCKSIZE_Y-1)/BLOCKSIZE_Y), ((DATASIZE_Z+BLOCKSIZE_Z-1)/BLOCKSIZE_Z));

    float time;
    cudaEvent_t start, stop;
    cudaEventCreate(&start);
    cudaEventCreate(&stop);
    cudaEventRecord(start, 0);

    boxcar_shared<<<gridSize,blockSize>>>(d_output, d_input);
    gpuErrchk(cudaPeekAtLastError());
    gpuErrchk(cudaDeviceSynchronize());

    cudaEventRecord(stop, 0);
    cudaEventSynchronize(stop);
    cudaEventElapsedTime(&time, start, stop);
    printf("Elapsed time:  %3.4f ms \n", time);

    // --- Copy result from GPU to CPU
    gpuErrchk(cudaMemcpy(output, d_output, ((nx*ny*nz)*sizeof(int)), cudaMemcpyDeviceToHost));

    t2 = clock();
    t2sum = ((double)(t2-t1))/CLOCKS_PER_SEC;
    printf(" Device compute took %3.2f seconds.  Beginning host compute.\n", t2sum);

    // --- Host-side computations
    for (int u=0; u<nz; u++)
        for (int v=0; v<ny; v++)
            for (int w=0; w<nx; w++){
                temp = 0;
                for (int i=0; i<wz; i++)
                    for (int j=0; j<wy; j++)
                        for (int k=0; k<wx; k++)
                            temp = temp + input[(i+u)*(ny+(wy-1))*(nx+(wx-1))+(j+v)*(nx+(wx-1))+(k+w)];
                ref_output[u*ny*nx + v*nx + w] = temp;
            }

    t3 = clock();
    t3sum = ((double)(t3-t2))/CLOCKS_PER_SEC;
    printf(" Host compute took %3.2f seconds.  Comparing results.\n", t3sum);

    // --- Check CPU and GPU results
    for (int i=0; i<nz; i++)
        for (int j=0; j<ny; j++)
            for (int k=0; k<nx; k++)
                if (ref_output[i*ny*nx + j*nx + k] != output[i*ny*nx + j*nx + k]) {
                    printf("Mismatch at x= %d, y= %d, z= %d  Host= %d, Device = %d\n", i, j, k, ref_output[i*ny*nx + j*nx + k], output[i*ny*nx + j*nx + k]);
                    return 1;
                }
    printf("Results match!\n");

    // --- Freeing memory
    free(input);
    free(output);
    gpuErrchk(cudaFree(d_input));
    gpuErrchk(cudaFree(d_output));

    cudaDeviceReset();

    return 0;
}
于 2014-07-23T18:26:23.233 回答