我有一张有 150 万行的表。我运行一个查询来获取列中具有非重复值的记录。我观察到创建索引后查询性能下降的行为。我还使用具有 100% 估计百分比(计算模式)的 dbms_stats 来收集统计信息,以便 oracle 11g CBO 对查询计划做出更明智的决定,但它并没有提高查询执行时间。
SQL> desc tab3;
Name Null? Type
----------------------------------------------
COL1 NUMBER(38)
COL2 VARCHAR2(100)
COL3 VARCHAR2(36)
COL4 VARCHAR2(36)
COL5 VARCHAR2(4000)
COL6 VARCHAR2(4000)
MEASURE_0 VARCHAR2(4000)
MEASURE_1 VARCHAR2(4000)
MEASURE_2 VARCHAR2(4000)
MEASURE_3 VARCHAR2(4000)
MEASURE_4 VARCHAR2(4000)
MEASURE_5 VARCHAR2(4000)
MEASURE_6 VARCHAR2(4000)
MEASURE_7 VARCHAR2(4000)
MEASURE_8 VARCHAR2(4000)
MEASURE_9 VARCHAR2(4000)
该列measure_0
有 40 万个唯一值。
SQL> select count(*) from (select measure_0 from tab3 group by measure_0 having count(*) = 1) abc;
COUNT(*)
----------
403664
以下是带有执行计划的查询,请注意表上没有索引。
SQL> set autotrace traceonly;
SQL> SELECT * FROM (
2 SELECT
3 (ROWNUM -1) AS COL1,
4 ft.COL1 AS OLD_COL1,
5 ft.COL2,
6 ft.COL3,
7 ft.COL4,
8 ft.COL5,
9 ft.COL6,
10 ft.MEASURE_0,
11 ft.MEASURE_1,
12 ft.MEASURE_2,
13 ft.MEASURE_3,
14 ft.MEASURE_4,
15 ft.MEASURE_5,
16 ft.MEASURE_6,
17 ft.MEASURE_7,
18 ft.MEASURE_8,
19 ft.MEASURE_9
20 FROM tab3 ft
21 WHERE MEASURE_0 IN
22 (
23 SELECT MEASURE_0
24 FROM tab3
25 GROUP BY MEASURE_0
26 HAVING COUNT(*) = 1
27 )
28 ) ABC WHERE COL1 >= 0 AND COL1 <=449;
450 rows selected.
Elapsed: 00:00:01.90
Execution Plan
----------------------------------------------------------
Plan hash value: 3115757351
------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1243 | 28M| 717K (1)| 02:23:29 |
|* 1 | VIEW | | 1243 | 28M| 717K (1)| 02:23:29 |
| 2 | COUNT | | | | | |
|* 3 | HASH JOIN | | 1243 | 30M| 717K (1)| 02:23:29 |
| 4 | VIEW | VW_NSO_1 | 1686K| 3219M| 6274 (2)| 00:01:16 |
|* 5 | FILTER | | | | | |
| 6 | HASH GROUP BY | | 1 | 3219M| 6274 (2)| 00:01:16 |
| 7 | TABLE ACCESS FULL| TAB3 | 1686K| 3219M| 6196 (1)| 00:01:15 |
| 8 | TABLE ACCESS FULL | TAB3 | 1686K| 37G| 6211 (1)| 00:01:15 |
------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
1 - filter("COL1">=0 AND "COL1"<=449)
3 - access("MEASURE_0"="MEASURE_0")
5 - filter(COUNT(*)=1)
Note
-----
- dynamic sampling used for this statement (level=2)
Statistics
----------------------------------------------------------
354 recursive calls
0 db block gets
46518 consistent gets
45122 physical reads
0 redo size
43972 bytes sent via SQL*Net to client
715 bytes received via SQL*Net from client
31 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
450 rows processed
查询占用1.90秒。如果我再次运行查询,则需要1.66秒。为什么第一次运行需要更多时间?
为了加快速度,我在查询中使用的两列上创建了索引。
SQL> create index ind_tab3_orgid on tab3(COL1);
Index created.
Elapsed: 00:00:01.68
SQL> create index ind_tab3_msr_0 on tab3(measure_0);
Index created.
Elapsed: 00:00:01.83
当我在此之后第一次触发查询时,花了21秒才回来。而随后的运行将其提高到2.9秒。为什么甲骨文在第一次运行时要花这么多时间,是在预热还是什么......让我感到困惑!
这是需要2.9秒时的计划-
450 rows selected.
Elapsed: 00:00:02.92
Execution Plan
----------------------------------------------------------
Plan hash value: 240271480
-------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
-------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1243 | 28M| 711K (1)| 02:22:15 |
|* 1 | VIEW | | 1243 | 28M| 711K (1)| 02:22:15 |
| 2 | COUNT | | | | | |
| 3 | NESTED LOOPS | | | | | |
| 4 | NESTED LOOPS | | 1243 | 30M| 711K (1)| 02:22:15 |
| 5 | VIEW | VW_NSO_1 | 1686K| 3219M| 6274 (2)| 00:01:16 |
|* 6 | FILTER | | | | | |
| 7 | HASH GROUP BY | | 1 | 3219M| 6274 (2)| 00:01:16 |
| 8 | TABLE ACCESS FULL | TAB3 | 1686K| 3219M| 6196 (1)| 00:01:15 |
|* 9 | INDEX RANGE SCAN | IND_TAB3_MSR_0 | 1243 | | 2 (0)| 00:00:01 |
| 10 | TABLE ACCESS BY INDEX ROWID| TAB3 | 1243 | 28M| 44 (0)| 00:00:01 |
-------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
1 - filter("COL1">=0 AND "COL1"<=449)
6 - filter(COUNT(*)=1)
9 - access("MEASURE_0"="MEASURE_0")
Note
-----
- dynamic sampling used for this statement (level=2)
Statistics
----------------------------------------------------------
0 recursive calls
0 db block gets
660054 consistent gets
22561 physical reads
0 redo size
44358 bytes sent via SQL*Net to client
715 bytes received via SQL*Net from client
31 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
450 rows processed
我预计时间会低于表未编入索引时的时间。为什么表的索引版本比非索引版本需要更多时间来获取结果?如果我没记错的话,就是 TABLE ACCESS BY INDEX ROWID 占用了时间。我可以强制 oracle 使用 TABLE ACCESS FULL 吗?
然后我收集了表格上的统计数据,以便 CBO 使用计算选项改进计划。所以现在统计数据是准确的。
SQL> EXECUTE dbms_stats.gather_table_stats (ownname=>'EQUBE67DP', tabname=>'TAB3',estimate_percent=>null,cascade=>true);
PL/SQL procedure successfully completed.
Elapsed: 00:01:02.47
SQL> set autotrace off;
SQL> select COLUMN_NAME,NUM_DISTINCT,SAMPLE_SIZE,HISTOGRAM,LAST_ANALYZED from dba_tab_cols where table_name = 'TAB3' ;
COLUMN_NAME NUM_DISTINCT SAMPLE_SIZE HISTOGRAM LAST_ANALYZED
------------------------------ ------------ ----------- --------------- ---------
COL1 1502257 1502257 NONE 27-JUN-12
COL2 0 NONE 27-JUN-12
COL3 1 1502257 NONE 27-JUN-12
COL4 0 NONE 27-JUN-12
COL5 1502257 1502257 NONE 27-JUN-12
COL6 1502257 1502257 NONE 27-JUN-12
MEASURE_0 405609 1502257 HEIGHT BALANCED 27-JUN-12
MEASURE_1 128570 1502257 NONE 27-JUN-12
MEASURE_2 1502257 1502257 NONE 27-JUN-12
MEASURE_3 185657 1502257 NONE 27-JUN-12
MEASURE_4 901 1502257 NONE 27-JUN-12
MEASURE_5 17 1502257 NONE 27-JUN-12
MEASURE_6 2202 1502257 NONE 27-JUN-12
MEASURE_7 2193 1502257 NONE 27-JUN-12
MEASURE_8 21 1502257 NONE 27-JUN-12
MEASURE_9 27263 1502257 NONE 27-JUN-12
我再次运行查询
450 rows selected.
Elapsed: 00:00:02.95
Execution Plan
----------------------------------------------------------
Plan hash value: 240271480
-------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
-------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 31M| 718G| 8046 (2)| 00:01:37 |
|* 1 | VIEW | | 31M| 718G| 8046 (2)| 00:01:37 |
| 2 | COUNT | | | | | |
| 3 | NESTED LOOPS | | | | | |
| 4 | NESTED LOOPS | | 31M| 62G| 8046 (2)| 00:01:37 |
| 5 | VIEW | VW_NSO_1 | 4057 | 7931K| 6263 (2)| 00:01:16 |
|* 6 | FILTER | | | | | |
| 7 | HASH GROUP BY | | 1 | 20285 | 6263 (2)| 00:01:16 |
| 8 | TABLE ACCESS FULL | TAB3 | 1502K| 7335K| 6193 (1)| 00:01:15 |
|* 9 | INDEX RANGE SCAN | IND_TAB3_MSR_0 | 4 | | 2 (0)| 00:00:01 |
| 10 | TABLE ACCESS BY INDEX ROWID| TAB3 | 779K| 75M| 3 (0)| 00:00:01 |
-------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
1 - filter("COL1">=0 AND "COL1"<=449)
6 - filter(COUNT(*)=1)
9 - access("MEASURE_0"="MEASURE_0")
Statistics
----------------------------------------------------------
0 recursive calls
0 db block gets
660054 consistent gets
22561 physical reads
0 redo size
44358 bytes sent via SQL*Net to client
715 bytes received via SQL*Net from client
31 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
450 rows processed
这次查询在2.9秒内返回(有时也需要3.9秒)。
我的目标是尽可能减少查询执行时间。但是在添加索引或计算统计信息之后,查询时间一直在增加。为什么会发生这种情况?即使保留索引,我该如何改进?