7

对于赋值,我们被要求创建一个返回反函数的函数。基本问题是从平方函数创建平方根函数。我想出了一个使用二分搜索的解决方案和另一个使用牛顿方法的解决方案。我的解决方案似乎适用于立方根和平方根,但不适用于 log10。以下是我的解决方案:

#Binary Search
def inverse1(f, delta=1e-8):
    """Given a function y = f(x) that is a monotonically increasing function on
    non-negative numbers, return the function x = f_1(y) that is an approximate
    inverse, picking the closest value to the inverse, within delta."""
    def f_1(y):
        low, high = 0, float(y)
        last, mid = 0, high/2
        while abs(mid-last) > delta:
            if f(mid) < y:
                low = mid
            else:
                high = mid
            last, mid = mid, (low + high)/2
        return mid
    return f_1

#Newton's Method
def inverse(f, delta=1e-5):
    """Given a function y = f(x) that is a monotonically increasing function on
    non-negative numbers, return the function x = f_1(y) that is an approximate
    inverse, picking the closest value to the inverse, within delta."""
    def derivative(func): return lambda y: (func(y+delta) - func(y)) / delta
    def root(y): return lambda x: f(x) - y
    def newton(y, iters=15):
        guess = float(y)/2
        rootfunc = root(y)
        derifunc = derivative(rootfunc)
        for _ in range(iters):
            guess = guess - (rootfunc(guess)/derifunc(guess))
        return guess
    return newton

无论使用哪种方法,当我在教授的测试函数中输入 n = 10000 for log10() 时,我都会收到此错误:(例外:当使用我的牛顿方法函数时,log10() 是遥不可及的,而这在达到输入阈值之前,二进制搜索方法相对准确,无论哪种方式,当 n = 10000 时,两种解决方案都会抛出此错误)

   2: sqrt =     1.4142136 (    1.4142136 actual); 0.0000 diff; ok
   2: log =     0.3010300 (    0.3010300 actual); 0.0000 diff; ok
   2: cbrt =     1.2599211 (    1.2599210 actual); 0.0000 diff; ok
   4: sqrt =     2.0000000 (    2.0000000 actual); 0.0000 diff; ok
   4: log =     0.6020600 (    0.6020600 actual); 0.0000 diff; ok
   4: cbrt =     1.5874011 (    1.5874011 actual); 0.0000 diff; ok
   6: sqrt =     2.4494897 (    2.4494897 actual); 0.0000 diff; ok
   6: log =     0.7781513 (    0.7781513 actual); 0.0000 diff; ok
   6: cbrt =     1.8171206 (    1.8171206 actual); 0.0000 diff; ok
   8: sqrt =     2.8284271 (    2.8284271 actual); 0.0000 diff; ok
   8: log =     0.9030900 (    0.9030900 actual); 0.0000 diff; ok
   8: cbrt =     2.0000000 (    2.0000000 actual); 0.0000 diff; ok
  10: sqrt =     3.1622777 (    3.1622777 actual); 0.0000 diff; ok
  10: log =     1.0000000 (    1.0000000 actual); 0.0000 diff; ok
  10: cbrt =     2.1544347 (    2.1544347 actual); 0.0000 diff; ok
  99: sqrt =     9.9498744 (    9.9498744 actual); 0.0000 diff; ok
  99: log =     1.9956352 (    1.9956352 actual); 0.0000 diff; ok
  99: cbrt =     4.6260650 (    4.6260650 actual); 0.0000 diff; ok
 100: sqrt =    10.0000000 (   10.0000000 actual); 0.0000 diff; ok
 100: log =     2.0000000 (    2.0000000 actual); 0.0000 diff; ok
 100: cbrt =     4.6415888 (    4.6415888 actual); 0.0000 diff; ok
 101: sqrt =    10.0498756 (   10.0498756 actual); 0.0000 diff; ok
 101: log =     2.0043214 (    2.0043214 actual); 0.0000 diff; ok
 101: cbrt =     4.6570095 (    4.6570095 actual); 0.0000 diff; ok
1000: sqrt =    31.6227766 (   31.6227766 actual); 0.0000 diff; ok
Traceback (most recent call last):
  File "/CS212/Unit3HW.py", line 296, in <module>
    print test()
  File "/CS212/Unit3HW.py", line 286, in test
    test1(n, 'log', log10(n), math.log10(n))
  File "/CS212/Unit3HW.py", line 237, in f_1
    if f(mid) < y:
  File "/CS212/Unit3HW.py", line 270, in power10
    def power10(x): return 10**x
OverflowError: (34, 'Result too large')

这是测试功能:

def test():
    import math
    nums = [2,4,6,8,10,99,100,101,1000,10000, 20000, 40000, 100000000]
    for n in nums:
        test1(n, 'sqrt', sqrt(n), math.sqrt(n))
        test1(n, 'log', log10(n), math.log10(n))
        test1(n, 'cbrt', cbrt(n), n**(1./3.))


def test1(n, name, value, expected):
    diff = abs(value - expected)
    print '%6g: %s = %13.7f (%13.7f actual); %.4f diff; %s' %(
        n, name, value, expected, diff,
        ('ok' if diff < .002 else '**** BAD ****'))

这些是测试的设置方式:

#Using inverse() or inverse1() depending on desired method
def power10(x): return 10**x
def square(x): return x*x
log10 = inverse(power10)
def cube(x): return x*x*x
sqrt = inverse(square)
cbrt = inverse(cube)
print test()

发布的其他解决方案似乎在运行全套测试输入时没有问题(我试图不查看发布的解决方案)。对此错误有任何见解吗?


似乎共识是数字的大小,但是,我教授的代码似乎适用于所有情况:

#Prof's code:
def inverse2(f, delta=1/1024.):
    def f_1(y):
        lo, hi = find_bounds(f, y)
        return binary_search(f, y, lo, hi, delta)
    return f_1

def find_bounds(f, y):
    x = 1
    while f(x) < y:
        x = x * 2
    lo = 0 if (x ==1) else x/2
    return lo, x

def binary_search(f, y, lo, hi, delta):
    while lo <= hi:
        x = (lo + hi) / 2
        if f(x) < y:
            lo = x + delta
        elif f(x) > y:
            hi = x - delta
        else:
            return x;
    return hi if (f(hi) - y < y - f(lo)) else lo

log10 = inverse2(power10)
sqrt = inverse2(square)
cbrt = inverse2(cube)

print test() 

结果:

     2: sqrt =     1.4134903 (    1.4142136 actual); 0.0007 diff; ok
     2: log =     0.3000984 (    0.3010300 actual); 0.0009 diff; ok
     2: cbrt =     1.2590427 (    1.2599210 actual); 0.0009 diff; ok
     4: sqrt =     2.0009756 (    2.0000000 actual); 0.0010 diff; ok
     4: log =     0.6011734 (    0.6020600 actual); 0.0009 diff; ok
     4: cbrt =     1.5865107 (    1.5874011 actual); 0.0009 diff; ok
     6: sqrt =     2.4486818 (    2.4494897 actual); 0.0008 diff; ok
     6: log =     0.7790794 (    0.7781513 actual); 0.0009 diff; ok
     6: cbrt =     1.8162270 (    1.8171206 actual); 0.0009 diff; ok
     8: sqrt =     2.8289337 (    2.8284271 actual); 0.0005 diff; ok
     8: log =     0.9022484 (    0.9030900 actual); 0.0008 diff; ok
     8: cbrt =     2.0009756 (    2.0000000 actual); 0.0010 diff; ok
    10: sqrt =     3.1632442 (    3.1622777 actual); 0.0010 diff; ok
    10: log =     1.0009756 (    1.0000000 actual); 0.0010 diff; ok
    10: cbrt =     2.1534719 (    2.1544347 actual); 0.0010 diff; ok
    99: sqrt =     9.9506714 (    9.9498744 actual); 0.0008 diff; ok
    99: log =     1.9951124 (    1.9956352 actual); 0.0005 diff; ok
    99: cbrt =     4.6253061 (    4.6260650 actual); 0.0008 diff; ok
   100: sqrt =    10.0004883 (   10.0000000 actual); 0.0005 diff; ok
   100: log =     2.0009756 (    2.0000000 actual); 0.0010 diff; ok
   100: cbrt =     4.6409388 (    4.6415888 actual); 0.0007 diff; ok
   101: sqrt =    10.0493288 (   10.0498756 actual); 0.0005 diff; ok
   101: log =     2.0048876 (    2.0043214 actual); 0.0006 diff; ok
   101: cbrt =     4.6575475 (    4.6570095 actual); 0.0005 diff; ok
  1000: sqrt =    31.6220242 (   31.6227766 actual); 0.0008 diff; ok
  1000: log =     3.0000000 (    3.0000000 actual); 0.0000 diff; ok
  1000: cbrt =    10.0004883 (   10.0000000 actual); 0.0005 diff; ok
 10000: sqrt =    99.9991455 (  100.0000000 actual); 0.0009 diff; ok
 10000: log =     4.0009756 (    4.0000000 actual); 0.0010 diff; ok
 10000: cbrt =    21.5436456 (   21.5443469 actual); 0.0007 diff; ok
 20000: sqrt =   141.4220798 (  141.4213562 actual); 0.0007 diff; ok
 20000: log =     4.3019052 (    4.3010300 actual); 0.0009 diff; ok
 20000: cbrt =    27.1449150 (   27.1441762 actual); 0.0007 diff; ok
 40000: sqrt =   199.9991455 (  200.0000000 actual); 0.0009 diff; ok
 40000: log =     4.6028333 (    4.6020600 actual); 0.0008 diff; ok
 40000: cbrt =    34.2003296 (   34.1995189 actual); 0.0008 diff; ok
 1e+08: sqrt =  9999.9994545 (10000.0000000 actual); 0.0005 diff; ok
 1e+08: log =     8.0009761 (    8.0000000 actual); 0.0010 diff; ok
 1e+08: cbrt =   464.1597912 (  464.1588834 actual); 0.0009 diff; ok
None
4

3 回答 3

6

这实际上是您对数学而不是程序的理解的问题。该算法很好,但提供的初始条件不是。

inverse(f, delta)这样定义:

def inverse(f, delta=1e-5):
    ...
    def newton(y, iters=15):
        guess = float(y)/2
        ...
    return newton

所以你猜 1000 = 10 x的结果是 500.0,但肯定 10 500太大了。最初的猜测应该选择对f有效,而不是为f的倒数选择。

我建议您用 1 的猜测值进行初始化,即将该行替换为

guess = 1

它应该可以正常工作。


顺便说一句,您的二进制搜索的初始条件也是错误的,因为您假设解决方案在 0 和y之间:

low, high = 0, float(y)

这对您的测试用例来说是正确的,但是很容易构建反例,例如 log 10 0.1 (= -1)、√0.36 (= 0.6) 等。(您教授的find_bounds方法确实解决了 √0.36 问题,但仍然不会处理 log 10 0.1 问题。)

于 2012-06-26T19:42:31.547 回答
3

我追踪了你的错误,但它基本上归结为 10**10000000 导致 python 溢出。使用数学库快速检查

math.pow(10,10000000)

Traceback (most recent call last):
  File "<pyshell#3>", line 1, in <module>
    math.pow(10,10000000)
OverflowError: math range error

我为你做了一些研究,发现了这个

处理代码中的大数字

您需要重新评估为什么需要计算如此大的数字(并相应地更改您的代码 :: 建议)或开始寻找一些更大的数字处理解决方案。

您可以编辑逆函数以检查某些输入是否会导致它失败(try 语句),如果函数不是单调增加,这也可以解决零除法的一些问题,并避免这些区域或

您可以在关于 y=x 的“有趣”区域中镜像许多点,并通过这些点使用插值方案来创建“逆”函数(厄米特、泰勒级数等)。

于 2012-06-26T19:05:42.217 回答
2

如果您使用的是 Python 2.x,int并且long是不同的类型,OverflowError则只能导致ints(qv, Built-in Exceptions )。尝试显式使用longs(通过long()在整数值上使用内置函数,或附加L到数字文字)。

编辑:显然,正如 Paul Seeb 和 KennyTM 在他们出色的答案中指出的那样,这不是算法缺陷的补救措施。

于 2012-06-26T19:03:33.467 回答