对于赋值,我们被要求创建一个返回反函数的函数。基本问题是从平方函数创建平方根函数。我想出了一个使用二分搜索的解决方案和另一个使用牛顿方法的解决方案。我的解决方案似乎适用于立方根和平方根,但不适用于 log10。以下是我的解决方案:
#Binary Search
def inverse1(f, delta=1e-8):
"""Given a function y = f(x) that is a monotonically increasing function on
non-negative numbers, return the function x = f_1(y) that is an approximate
inverse, picking the closest value to the inverse, within delta."""
def f_1(y):
low, high = 0, float(y)
last, mid = 0, high/2
while abs(mid-last) > delta:
if f(mid) < y:
low = mid
else:
high = mid
last, mid = mid, (low + high)/2
return mid
return f_1
#Newton's Method
def inverse(f, delta=1e-5):
"""Given a function y = f(x) that is a monotonically increasing function on
non-negative numbers, return the function x = f_1(y) that is an approximate
inverse, picking the closest value to the inverse, within delta."""
def derivative(func): return lambda y: (func(y+delta) - func(y)) / delta
def root(y): return lambda x: f(x) - y
def newton(y, iters=15):
guess = float(y)/2
rootfunc = root(y)
derifunc = derivative(rootfunc)
for _ in range(iters):
guess = guess - (rootfunc(guess)/derifunc(guess))
return guess
return newton
无论使用哪种方法,当我在教授的测试函数中输入 n = 10000 for log10() 时,我都会收到此错误:(例外:当使用我的牛顿方法函数时,log10() 是遥不可及的,而这在达到输入阈值之前,二进制搜索方法相对准确,无论哪种方式,当 n = 10000 时,两种解决方案都会抛出此错误)
2: sqrt = 1.4142136 ( 1.4142136 actual); 0.0000 diff; ok
2: log = 0.3010300 ( 0.3010300 actual); 0.0000 diff; ok
2: cbrt = 1.2599211 ( 1.2599210 actual); 0.0000 diff; ok
4: sqrt = 2.0000000 ( 2.0000000 actual); 0.0000 diff; ok
4: log = 0.6020600 ( 0.6020600 actual); 0.0000 diff; ok
4: cbrt = 1.5874011 ( 1.5874011 actual); 0.0000 diff; ok
6: sqrt = 2.4494897 ( 2.4494897 actual); 0.0000 diff; ok
6: log = 0.7781513 ( 0.7781513 actual); 0.0000 diff; ok
6: cbrt = 1.8171206 ( 1.8171206 actual); 0.0000 diff; ok
8: sqrt = 2.8284271 ( 2.8284271 actual); 0.0000 diff; ok
8: log = 0.9030900 ( 0.9030900 actual); 0.0000 diff; ok
8: cbrt = 2.0000000 ( 2.0000000 actual); 0.0000 diff; ok
10: sqrt = 3.1622777 ( 3.1622777 actual); 0.0000 diff; ok
10: log = 1.0000000 ( 1.0000000 actual); 0.0000 diff; ok
10: cbrt = 2.1544347 ( 2.1544347 actual); 0.0000 diff; ok
99: sqrt = 9.9498744 ( 9.9498744 actual); 0.0000 diff; ok
99: log = 1.9956352 ( 1.9956352 actual); 0.0000 diff; ok
99: cbrt = 4.6260650 ( 4.6260650 actual); 0.0000 diff; ok
100: sqrt = 10.0000000 ( 10.0000000 actual); 0.0000 diff; ok
100: log = 2.0000000 ( 2.0000000 actual); 0.0000 diff; ok
100: cbrt = 4.6415888 ( 4.6415888 actual); 0.0000 diff; ok
101: sqrt = 10.0498756 ( 10.0498756 actual); 0.0000 diff; ok
101: log = 2.0043214 ( 2.0043214 actual); 0.0000 diff; ok
101: cbrt = 4.6570095 ( 4.6570095 actual); 0.0000 diff; ok
1000: sqrt = 31.6227766 ( 31.6227766 actual); 0.0000 diff; ok
Traceback (most recent call last):
File "/CS212/Unit3HW.py", line 296, in <module>
print test()
File "/CS212/Unit3HW.py", line 286, in test
test1(n, 'log', log10(n), math.log10(n))
File "/CS212/Unit3HW.py", line 237, in f_1
if f(mid) < y:
File "/CS212/Unit3HW.py", line 270, in power10
def power10(x): return 10**x
OverflowError: (34, 'Result too large')
这是测试功能:
def test():
import math
nums = [2,4,6,8,10,99,100,101,1000,10000, 20000, 40000, 100000000]
for n in nums:
test1(n, 'sqrt', sqrt(n), math.sqrt(n))
test1(n, 'log', log10(n), math.log10(n))
test1(n, 'cbrt', cbrt(n), n**(1./3.))
def test1(n, name, value, expected):
diff = abs(value - expected)
print '%6g: %s = %13.7f (%13.7f actual); %.4f diff; %s' %(
n, name, value, expected, diff,
('ok' if diff < .002 else '**** BAD ****'))
这些是测试的设置方式:
#Using inverse() or inverse1() depending on desired method
def power10(x): return 10**x
def square(x): return x*x
log10 = inverse(power10)
def cube(x): return x*x*x
sqrt = inverse(square)
cbrt = inverse(cube)
print test()
发布的其他解决方案似乎在运行全套测试输入时没有问题(我试图不查看发布的解决方案)。对此错误有任何见解吗?
似乎共识是数字的大小,但是,我教授的代码似乎适用于所有情况:
#Prof's code:
def inverse2(f, delta=1/1024.):
def f_1(y):
lo, hi = find_bounds(f, y)
return binary_search(f, y, lo, hi, delta)
return f_1
def find_bounds(f, y):
x = 1
while f(x) < y:
x = x * 2
lo = 0 if (x ==1) else x/2
return lo, x
def binary_search(f, y, lo, hi, delta):
while lo <= hi:
x = (lo + hi) / 2
if f(x) < y:
lo = x + delta
elif f(x) > y:
hi = x - delta
else:
return x;
return hi if (f(hi) - y < y - f(lo)) else lo
log10 = inverse2(power10)
sqrt = inverse2(square)
cbrt = inverse2(cube)
print test()
结果:
2: sqrt = 1.4134903 ( 1.4142136 actual); 0.0007 diff; ok
2: log = 0.3000984 ( 0.3010300 actual); 0.0009 diff; ok
2: cbrt = 1.2590427 ( 1.2599210 actual); 0.0009 diff; ok
4: sqrt = 2.0009756 ( 2.0000000 actual); 0.0010 diff; ok
4: log = 0.6011734 ( 0.6020600 actual); 0.0009 diff; ok
4: cbrt = 1.5865107 ( 1.5874011 actual); 0.0009 diff; ok
6: sqrt = 2.4486818 ( 2.4494897 actual); 0.0008 diff; ok
6: log = 0.7790794 ( 0.7781513 actual); 0.0009 diff; ok
6: cbrt = 1.8162270 ( 1.8171206 actual); 0.0009 diff; ok
8: sqrt = 2.8289337 ( 2.8284271 actual); 0.0005 diff; ok
8: log = 0.9022484 ( 0.9030900 actual); 0.0008 diff; ok
8: cbrt = 2.0009756 ( 2.0000000 actual); 0.0010 diff; ok
10: sqrt = 3.1632442 ( 3.1622777 actual); 0.0010 diff; ok
10: log = 1.0009756 ( 1.0000000 actual); 0.0010 diff; ok
10: cbrt = 2.1534719 ( 2.1544347 actual); 0.0010 diff; ok
99: sqrt = 9.9506714 ( 9.9498744 actual); 0.0008 diff; ok
99: log = 1.9951124 ( 1.9956352 actual); 0.0005 diff; ok
99: cbrt = 4.6253061 ( 4.6260650 actual); 0.0008 diff; ok
100: sqrt = 10.0004883 ( 10.0000000 actual); 0.0005 diff; ok
100: log = 2.0009756 ( 2.0000000 actual); 0.0010 diff; ok
100: cbrt = 4.6409388 ( 4.6415888 actual); 0.0007 diff; ok
101: sqrt = 10.0493288 ( 10.0498756 actual); 0.0005 diff; ok
101: log = 2.0048876 ( 2.0043214 actual); 0.0006 diff; ok
101: cbrt = 4.6575475 ( 4.6570095 actual); 0.0005 diff; ok
1000: sqrt = 31.6220242 ( 31.6227766 actual); 0.0008 diff; ok
1000: log = 3.0000000 ( 3.0000000 actual); 0.0000 diff; ok
1000: cbrt = 10.0004883 ( 10.0000000 actual); 0.0005 diff; ok
10000: sqrt = 99.9991455 ( 100.0000000 actual); 0.0009 diff; ok
10000: log = 4.0009756 ( 4.0000000 actual); 0.0010 diff; ok
10000: cbrt = 21.5436456 ( 21.5443469 actual); 0.0007 diff; ok
20000: sqrt = 141.4220798 ( 141.4213562 actual); 0.0007 diff; ok
20000: log = 4.3019052 ( 4.3010300 actual); 0.0009 diff; ok
20000: cbrt = 27.1449150 ( 27.1441762 actual); 0.0007 diff; ok
40000: sqrt = 199.9991455 ( 200.0000000 actual); 0.0009 diff; ok
40000: log = 4.6028333 ( 4.6020600 actual); 0.0008 diff; ok
40000: cbrt = 34.2003296 ( 34.1995189 actual); 0.0008 diff; ok
1e+08: sqrt = 9999.9994545 (10000.0000000 actual); 0.0005 diff; ok
1e+08: log = 8.0009761 ( 8.0000000 actual); 0.0010 diff; ok
1e+08: cbrt = 464.1597912 ( 464.1588834 actual); 0.0009 diff; ok
None