@马特@凯恩
凯恩做得很好,只是他选择了错误的不等式列。我只是做了一些更正。如果有人能想出一个更快的方法,而不是“古怪的更新”,我会感到惊讶,这可能会让相关的子查询和 CROSS APPLY 方法大开眼界。
这是构建更多测试数据的代码,而不是出于性能测试目的而动摇的数据。
--===== Conditionallly drop the test table to make reruns in SSMS easier
IF OBJECT_ID('tempdb..#Test','U') IS NOT NULL
DROP TABLE #Test
;
--===== Create and populate the test table on-the-fly
-- using a "Pseudo Cursor" which is many times
-- faster than a WHILE loop.
SELECT TOP 100000
FK = ABS(CHECKSUM(NEWID()))%100+100, -- 100 thru 199
Priority = ABS(CHECKSUM(NEWID()))%100+1, -- 1 thru 100
PriorityUpdateDateTime = DATEADD(dd,
ABS(CHECKSUM(NEWID()))%DATEDIFF(dd,'2000','2010')
,'2000') --20000101 thru 20091231
INTO #Test
FROM sys.all_columns ac1 --has more than 4000 rows even on a new system
CROSS JOIN sys.all_columns ac2
;
--===== Create a clustered index to improve performance by about 10 times in this case
CREATE INDEX IX_#Test ON #Test (FK,PriorityUpdateDateTime)
;
这是凯恩的代码的两种不同的演绎方式。详细信息在代码中。两者在大约相同的时间内返回相同的结果。
--===== Kane's correlated subquery works just fine here once we
-- flip it around and use a different column name in the
-- inequality part.
SELECT t1.FK,
t1.Priority,
StartDate = t1.PriorityUpdateDateTime,
EndDate =
(
SELECT MIN(t2.PriorityUpdateDateTime)
FROM #Test t2
WHERE t2.FK = t1.FK
AND t2.PriorityUpdateDateTime > t1.PriorityUpdateDateTime
)
FROM #Test t1
ORDER BY t1.FK, t1.PriorityUpdateDateTime, t1.Priority
;
--===== Or, you could use a CROSS APPLY and get the same thing because
-- a CROSS APPLY isn't much more than a correlated sub-query.
SELECT t1.FK,
t1.Priority,
StartDate = t1.PriorityUpdateDateTime,
d.EndDate
FROM #Test t1
CROSS APPLY
(
SELECT MIN(t2.PriorityUpdateDateTime)
FROM #Test t2
WHERE t2.FK = t1.FK
AND t2.PriorityUpdateDateTime > t1.PriorityUpdateDateTime
) d (EndDate)
ORDER BY t1.FK, t1.PriorityUpdateDateTime, t1.Priority
;