102

是否有任何 C++(或 C)库具有类似 NumPy 的数组,支持切片、矢量化操作、逐个元素添加和减去内容等?

4

13 回答 13

73

这里有几个可能适合您需求的免费软件。

  1. GNU 科学库是用 C 编写的GPL 软件。因此,它具有类似 C 的分配和编程方式(指针等)。使用GSLwrap,您可以使用 C++ 编程方式,同时仍使用 GSL。GSL 有一个BLAS实现,但如果您想要更多性能,您可以使用ATLAS代替默认的 CBLAS。

  2. boost/uBLAS库是一个 BSL 库,用 C++ 编写并作为 boost 包分发。它是实现 BLAS 标准的 C++ 方式。uBLAS 带有一些线性代数函数,并且有一个与 ATLAS 的实验绑定

  3. eigen是一个用 C++ 编写的线性代数库,在 MPL2 许可证(从版本 3.1.1 开始)或 LGPL3/GPL2(旧版本)下分发。这是一种 C++ 编程方式,但比其他两种方式更集成(可用的算法和数据结构更多)。Eigen声称比上面的 BLAS 实现更快,但不遵循事实上的标准 BLAS API。Eigen 似乎并没有在并行实现上投入太多精力。

  4. Armadillo是用于 C++ 的 LGPL3 库。它具有LAPACK(numpy 使用的库)的绑定。它使用递归模板和模板元编程,这是一个好点(我不知道其他库是否也在这样做?)。

  5. xtensor是一个获得 BSD 许可的 C++ 库。它提供了一个与 NumPy 非常相似的 C++ API。有关备忘单,请参阅https://xtensor.readthedocs.io/en/latest/numpy.html

如果您只想获得数据结构和基本线性代数,这些替代方案非常好。根据您对风格、许可证或系统管理员挑战的品味(安装 LAPACK 等大型库可能很困难),您可以选择最适合您需求的库。

于 2012-06-23T13:10:38.350 回答
64

试试xtensor。(请参阅NumPy 到 Xtensor 备忘单)。

xtensor 是一个 C++ 库,用于使用多维数组表达式进行数值分析。

xtensor 提供

  • 一个可扩展的表达系统,支持 numpy 风格的广播。
  • 一个遵循 C++ 标准库习语的 API。
  • 用于操作数组表达式并基于 xtensor 构建的工具。

例子

初始化一个二维数组并计算其中一行与一维数组的总和。

#include <iostream>
#include "xtensor/xarray.hpp"
#include "xtensor/xio.hpp"

xt::xarray<double> arr1
  {{1.0, 2.0, 3.0},
   {2.0, 5.0, 7.0},
   {2.0, 5.0, 7.0}};

xt::xarray<double> arr2
  {5.0, 6.0, 7.0};

xt::xarray<double> res = xt::view(arr1, 1) + arr2;

std::cout << res;

输出

{7, 11, 14}

初始化一维数组并就地重塑它。

#include <iostream>
#include "xtensor/xarray.hpp"
#include "xtensor/xio.hpp"

xt::xarray<int> arr
  {1, 2, 3, 4, 5, 6, 7, 8, 9};

arr.reshape({3, 3});

std::cout << arr;

输出

{{1, 2, 3},
 {4, 5, 6},
 {7, 8, 9}}
于 2016-11-06T11:23:16.027 回答
8

DyND被设计成一个类似 NumPy 的 C++ 库。诸如广播、算术运算符和切片之类的东西都可以正常工作。另一方面,它仍然是非常实验性的,许多功能还没有实现。

这是使用 DyND 数组在 C++ 中的 de Casteljau 算法的简单实现:

#include <iostream>
#include <dynd/array.hpp>

using namespace dynd;

nd::array decasteljau(nd::array a, double t){
    size_t e = a.get_dim_size();
    for(size_t i=0; i < e-1; i++){
        a = (1.-t) * a(irange()<(e-i-1)) + t * a(0<irange());
    }
    return a;
}

int main(){
    nd::array a = {1., 2., 2., -1.};
    std::cout << decasteljau(a, .25) << std::endl;
}

不久前,我写了一篇博客文章,其中包含更多示例以及 Fortran 90、C++ 中的 DyND 和 Python 中的 NumPy 的语法的并排比较。

免责声明:我是当前的 DyND 开发人员之一。

于 2015-10-27T17:48:51.763 回答
4

如果您想使用多维数组(如 numpy)进行图像处理或神经网络,您可以使用OpenCV cv::Mat大量的图像处理算法。如果您只想将它​​用于矩阵运算,您只需编译相应的 opencv 模块以减小大小并拥有微型 OpenCV 库。

cv::Mat(Matrix) 是一个 n 维数组,可用于存储各种类型的数据,例如 RGB、HSV 或灰度图像、具有实数或复数值的向量、其他矩阵等。

一个 Mat 包含以下信息:width, height, type, channels, data, flags, datastart, dataend等等。

它有几种矩阵操作方法。您可以在 CUDA 核心以及cv::cuda::GpuMat.

考虑我想创建一个 10 行 20 列的矩阵,输入 CV_32FC3:

int R = 10, C = 20;
Mat m1; 
m1.create(R, C, CV_32FC3); //creates empty matrix

Mat m2(cv::Size(R, C), CV_32FC3); // creates a matrix with R rows, C columns with data type T where R and C are integers, 

Mat m3(R, C, CV_32FC3); // same as m2

奖金:

为矩阵运算编译小巧紧凑的 opencv库。其中一种方法就像本文中提到的那样。

或者

使用以下 cmake 命令编译 opencv 源代码:

$ git clone https://github.com/opencv/opencv.git
$ cd opencv
$ git checkout <version you want to checkout>
$ mkdir build
$ cd build
$ cmake -D WITH_CUDA=OFF -D WITH_MATLAB=OFF -D BUILD_ANDROID_EXAMPLES=OFF -D BUILD_DOCS=OFF -D BUILD_PERF_TESTS=OFF -D BUILD_TESTS=OFF -DANDROID_STL=c++_shared -DBUILD_SHARED_LIBS=ON -D BUILD_opencv_objdetect=OFF -D BUILD_opencv_video=OFF -D BUILD_opencv_videoio=OFF -D BUILD_opencv_features2d=OFF -D BUILD_opencv_flann=OFF -D BUILD_opencv_highgui=OFF -D BUILD_opencv_ml=OFF -D BUILD_opencv_photo=OFF -D BUILD_opencv_python=OFF -D BUILD_opencv_shape=OFF -D BUILD_opencv_stitching=OFF -D BUILD_opencv_superres=OFF -D BUILD_opencv_ts=OFF -D BUILD_opencv_videostab=OFF -D BUILD_opencv_dnn=OFF -D BUILD_opencv_imgproc=OFF ..
$ make -j $nproc
$ sudo make install

试试这个例子:

 #include "opencv2/core.hpp"
 #include<iostream>

 int main()
 {
     std::cout << "OpenCV Version " << CV_VERSION << std::endl;

     int R = 2, C = 4;
     cv::Mat m1;
     m1.create(R, C, CV_32FC1); //creates empty matrix

     std::cout << "My Mat : \n" << m1 << std::endl;
 }

使用以下命令编译代码:

$ g++ -std=c++11 opencv_mat.cc -o opencv_mat `pkg-config --libs opencv` `pkg-config --cflags opencv`

运行可执行文件:

$ ./opencv_mat

OpenCV Version 3.4.2
My Mat :
[0, 0, 0, 0;
 0, 0, 0, 0]
于 2020-06-18T17:11:16.857 回答
4

这是一个老问题。还是想回答。想法可能会帮助很多人,尤其是 pydevs 用 C++ 编码。

如果您已经使用过 python numpy,那么NumCpp是一个不错的选择。它的语法极简,并且具有与 py numpy 类似的功能或方法。

自述文件中的比较部分也非常非常酷。

NumCpp

nc::NdArray<int> arr = {{4, 2}, {9, 4}, {5, 6}};
arr.reshape(5, 3);
arr.astype<double>();
于 2020-10-12T17:22:05.860 回答
3

Eigen 是一个很好的线性代数库。

http://eigen.tuxfamily.org/index.php?title=Main_Page

它很容易安装,因为它是一个只有头文件的库。它依赖于模板来生成优化好的代码。它自动向量化矩阵运算。

它还完全支持系数明智的操作,例如两个矩阵之间的“每元素乘法”。这是你需要的吗?

于 2012-06-23T12:20:40.347 回答
3

使用 LibTorch(C++ 的 PyTorch 前端)并开心。

于 2019-08-02T10:28:48.627 回答
2

Blitz++支持具有任意数量轴的数组,而 Armadillo 最多支持三个(向量、矩阵和立方体)。Eigen 仅支持向量和矩阵(不支持立方体)。缺点是 Blitz++ 除了基本的入口运算和张量收缩之外没有线性代数函数。开发似乎在很长一段时间前已经放缓,但也许这只是因为图书馆做了它所做的事情,不需要做太多的改变。

于 2013-05-04T13:07:10.637 回答
2

VIGRA 包含一个很好的 N 维数组实现:

http://ukoethe.github.io/vigra/doc/vigra/Tutorial.html

我广泛使用它,发现它非常简单有效。它也只是标题,因此很容易集成到您的开发环境中。就其 API 而言,这是我遇到的最接近使用 NumPy 的东西。

主要的缺点是它没有像其他人那样广泛使用,所以你不会在网上找到太多帮助。那个,而且它的名字很尴尬(尝试搜索它!)

于 2015-08-05T14:27:01.357 回答
2

xtensor 很好,但我最终自己用 c++20 编写了一个迷你库作为玩具项目,同时试图保持界面尽可能简单。这是:https ://github.com/gbalduzz/NDArray

示例代码:

using namespace nd;
NDArray<int, 2> m(3, 3); // 3x3 matrix
m = 2; // assign 2 to all
m(-1, all) = 1; // assign 1 to the last row.

auto tile = m(range{1, end}, range{1, end}); // 2x2 tile
std::sort(tile.begin(), tile.end());

std::cout << m; // prints [[2, 2, 2], [2, 1, 1], [1, 2, 2]]

它还没有提供将多个操作折叠在一起的花哨的算术运算符,但是您可以将任意 lambda 广播到一组具有相同形状的张量,或者使用惰性求值的算术运算符。

让我知道你对接口的看法以及它与其他选项的比较,如果这有任何希望,你希望看到什么样的操作被实现。

免费许可,无依赖!

附录:我设法正确编译和运行 xtensor,结果是我的库在迭代视图时明显更快(2 到 3 倍)

于 2020-10-17T23:37:38.693 回答
0

Eigen是一个线性代数(矩阵、向量……)的模板库。它只是标题并且可以免费使用(LGPL)。

于 2012-06-23T12:21:05.033 回答
0

GSL很棒,它可以满足您的所有要求,甚至更多。虽然它是在 GPL 下获得许可的。

于 2012-06-23T12:25:09.253 回答
-1

虽然GLM旨在与 OpenGL 和 GLSL 轻松结合,但它是一个功能齐全的仅适用于 C++ 的头文件数学库,具有一组非常直观的接口。

它声明了向量和矩阵类型以及对它们的各种操作。

将两个矩阵相乘很简单,如 (M1 * M2)。减去两个向量 (V1- V2)。

访问向量或矩阵中包含的值同样简单。例如,在声明一个 vec3 向量之后,可以使用 vector.x 访问它的第一个元素。看看这个。

于 2015-09-18T19:01:59.113 回答