我对 Python 的经验为零。我查看了一些教程材料,但似乎很难理解高级代码。所以我来这里是为了更具体的答案。对我来说,任务是重做我电脑中的代码。
这是场景:
我是一名在关系学习中研究张量分解的研究生。一篇论文[1] 提供了运行该算法的代码,如下:
import logging, time
from numpy import dot, zeros, kron, array, eye, argmax
from numpy.linalg import qr, pinv, norm, inv
from scipy.linalg import eigh
from numpy.random import rand
__version__ = "0.1"
__all__ = ['rescal', 'rescal_with_random_restarts']
__DEF_MAXITER = 500
__DEF_INIT = 'nvecs'
__DEF_PROJ = True
__DEF_CONV = 1e-5
__DEF_LMBDA = 0
_log = logging.getLogger('RESCAL')
def rescal_with_random_restarts(X, rank, restarts=10, **kwargs):
"""
Restarts RESCAL multiple time from random starting point and
returns factorization with best fit.
"""
models = []
fits = []
for i in range(restarts):
res = rescal(X, rank, init='random', **kwargs)
models.append(res)
fits.append(res[2])
return models[argmax(fits)]
def rescal(X, rank, **kwargs):
"""
RESCAL
Factors a three-way tensor X such that each frontal slice
X_k = A * R_k * A.T. The frontal slices of a tensor are
N x N matrices that correspond to the adjecency matrices
of the relational graph for a particular relation.
For a full description of the algorithm see:
Maximilian Nickel, Volker Tresp, Hans-Peter-Kriegel,
"A Three-Way Model for Collective Learning on Multi-Relational Data",
ICML 2011, Bellevue, WA, USA
Parameters
----------
X : list
List of frontal slices X_k of the tensor X. The shape of each X_k is ('N', 'N')
rank : int
Rank of the factorization
lmbda : float, optional
Regularization parameter for A and R_k factor matrices. 0 by default
init : string, optional
Initialization method of the factor matrices. 'nvecs' (default)
initializes A based on the eigenvectors of X. 'random' initializes
the factor matrices randomly.
proj : boolean, optional
Whether or not to use the QR decomposition when computing R_k.
True by default
maxIter : int, optional
Maximium number of iterations of the ALS algorithm. 500 by default.
conv : float, optional
Stop when residual of factorization is less than conv. 1e-5 by default
Returns
-------
A : ndarray
array of shape ('N', 'rank') corresponding to the factor matrix A
R : list
list of 'M' arrays of shape ('rank', 'rank') corresponding to the factor matrices R_k
f : float
function value of the factorization
iter : int
number of iterations until convergence
exectimes : ndarray
execution times to compute the updates in each iteration
"""
# init options
ainit = kwargs.pop('init', __DEF_INIT)
proj = kwargs.pop('proj', __DEF_PROJ)
maxIter = kwargs.pop('maxIter', __DEF_MAXITER)
conv = kwargs.pop('conv', __DEF_CONV)
lmbda = kwargs.pop('lmbda', __DEF_LMBDA)
if not len(kwargs) == 0:
raise ValueError( 'Unknown keywords (%s)' % (kwargs.keys()) )
sz = X[0].shape
dtype = X[0].dtype
n = sz[0]
k = len(X)
_log.debug('[Config] rank: %d | maxIter: %d | conv: %7.1e | lmbda: %7.1e' % (rank,
maxIter, conv, lmbda))
_log.debug('[Config] dtype: %s' % dtype)
# precompute norms of X
normX = [norm(M)**2 for M in X]
Xflat = [M.flatten() for M in X]
sumNormX = sum(normX)
# initialize A
if ainit == 'random':
A = array(rand(n, rank), dtype=dtype)
elif ainit == 'nvecs':
S = zeros((n, n), dtype=dtype)
T = zeros((n, n), dtype=dtype)
for i in range(k):
T = X[i]
S = S + T + T.T
evals, A = eigh(S,eigvals=(n-rank,n-1))
else :
raise 'Unknown init option ("%s")' % ainit
# initialize R
if proj:
Q, A2 = qr(A)
X2 = __projectSlices(X, Q)
R = __updateR(X2, A2, lmbda)
else :
R = __updateR(X, A, lmbda)
# compute factorization
fit = fitchange = fitold = f = 0
exectimes = []
ARAt = zeros((n,n), dtype=dtype)
for iter in xrange(maxIter):
tic = time.clock()
fitold = fit
A = __updateA(X, A, R, lmbda)
if proj:
Q, A2 = qr(A)
X2 = __projectSlices(X, Q)
R = __updateR(X2, A2, lmbda)
else :
R = __updateR(X, A, lmbda)
# compute fit value
f = lmbda*(norm(A)**2)
for i in range(k):
ARAt = dot(A, dot(R[i], A.T))
f += normX[i] + norm(ARAt)**2 - 2*dot(Xflat[i], ARAt.flatten()) + lmbda*(R[i].flatten()**2).sum()
f *= 0.5
fit = 1 - f / sumNormX
fitchange = abs(fitold - fit)
toc = time.clock()
exectimes.append( toc - tic )
_log.debug('[%3d] fit: %.5f | delta: %7.1e | secs: %.5f' % (iter,
fit, fitchange, exectimes[-1]))
if iter > 1 and fitchange < conv:
break
return A, R, f, iter+1, array(exectimes)
def __updateA(X, A, R, lmbda):
n, rank = A.shape
F = zeros((n, rank), dtype=X[0].dtype)
E = zeros((rank, rank), dtype=X[0].dtype)
AtA = dot(A.T,A)
for i in range(len(X)):
F += dot(X[i], dot(A, R[i].T)) + dot(X[i].T, dot(A, R[i]))
E += dot(R[i], dot(AtA, R[i].T)) + dot(R[i].T, dot(AtA, R[i]))
A = dot(F, inv(lmbda * eye(rank) + E))
return A
def __updateR(X, A, lmbda):
r = A.shape[1]
R = []
At = A.T
if lmbda == 0:
ainv = dot(pinv(dot(At, A)), At)
for i in range(len(X)):
R.append( dot(ainv, dot(X[i], ainv.T)) )
else :
AtA = dot(At, A)
tmp = inv(kron(AtA, AtA) + lmbda * eye(r**2))
for i in range(len(X)):
AtXA = dot(At, dot(X[i], A))
R.append( dot(AtXA.flatten(), tmp).reshape(r, r) )
return R
def __projectSlices(X, Q):
q = Q.shape[1]
X2 = []
for i in range(len(X)):
X2.append( dot(Q.T, dot(X[i], Q)) )
return X2
粘贴这么长的代码很无聊,但没有其他方法可以找出我的问题。我很抱歉这件事。
我根据作者的网站导入这个模块并传递参数:
import pickle, sys
from rescal import rescal
rank = sys.argv[1]
X = pickle.load('us-presidents.pickle')
A, R, f, iter, exectimes = rescal(X, rank, lmbda=1.0)
数据集 us-presidents.rdf 可以在这里找到。
我的问题是:
- 根据代码说明,张量 X 是一个列表。我不太明白这一点,如何将列表与 Python 中的张量相关联?我可以理解 Python 中的 tensor = list 吗?
- 我应该先将 RDF 格式转换为三元组(主语、谓语、宾语)格式吗?我不确定 X 的数据结构。如何手动为 X 赋值?
- 那么,如何运行呢?
未经作者授权粘贴代码,是否侵权?如果是这样,我很抱歉,我会尽快删除它。
这些问题可能有点无聊,但这些对我来说很重要。任何帮助将不胜感激。
[1] Maximilian Nickel, Volker Tresp, Hans-Peter Kriegel, A Three-Way Model for Collective Learning on Multi-Relational Data, 第 28 届机器学习国际会议论文集,2011 年,美国华盛顿州贝尔维尤