我对您的问题很感兴趣,但不确定如何将某种随机过程引入分组算法。如果您排列数据集(例如行的顺序),似乎 kmeans 算法确实会给出不同的结果。我在这里找到了一些信息。以下脚本使用一组随机数据演示了这一点。该图以黑色显示原始数据,然后通过排列(颜色)在每个集群的中心绘制一段。
由于我不确定您的 MOS 变量是如何定义的,因此我在数据框中添加了一个随机变量,以说明您如何寻找满足给定标准的聚类。为每个集群计算 MOS 的总和,并将结果存储在 MOS.sums 对象中。为了重现有利的聚类,您可以使用存储在种子对象中的用于排列的随机种子值。您可以看到排列结果是几个不同的聚类:
set.seed(33)
nsamples=500
nperms=10
nclusters=3
df <- data.frame(x=runif(nsamples), y=runif(nsamples), MOS=runif(nsamples))
MOS.sums <- matrix(NaN, nrow=nperms, ncol=nclusters)
colnames(MOS.sums) <- paste("cluster", 1:nclusters, sep=".")
rownames(MOS.sums) <- paste("perm", 1:nperms, sep=".")
seeds <- round(runif(nperms, min=1, max=10000))
plot(df$x, df$y)
COL <- rainbow(nperms)
for(i in seq(nperms)){
set.seed(seeds[i])
ORD <- sample(nsamples)
K <- kmeans(df[ORD,1:2], centers=nclusters)
MOS.sums[i,] <- tapply(df$MOS[ORD], K$cluster, sum)
segments(df$x[ORD], df$y[ORD], K$centers[K$cluster,1], K$centers[K$cluster,2], col=COL[i])
}
seeds
MOS.sums