117

我发现了一段我几个月前为面试准备而编写的代码。

根据我的评论,它试图解决这个问题:

给定一些以美分为单位的美元价值(例如 200 = 2 美元,1000 = 10 美元),找出构成美元价值的所有硬币组合。只允许使用便士 (1¢)、镍 (5¢)、10 美分 (10¢) 和 25 美分 (25¢)。

例如,如果给出 100,答案应该是:

4 quarter(s) 0 dime(s) 0 nickel(s) 0 pennies  
3 quarter(s) 1 dime(s) 0 nickel(s) 15 pennies  
etc.

我相信这可以通过迭代和递归的方式来解决。我的递归解决方案有很多错误,我想知道其他人将如何解决这个问题。这个问题的难点在于使其尽可能高效。

4

37 回答 37

55

很久以前我研究过一次,你可以阅读我的小文章。这是Mathematica 源代码

通过使用生成函数,您可以获得问题的封闭形式的常数时间解。Graham、Knuth 和 Patashnik 的《具体数学》就是为此而写的书,其中包含对该问题的相当广泛的讨论。本质上,您定义了一个多项式,其中第n个系数是换取n美元的方式的数量。

文章的第 4-5 页展示了如何使用 Mathematica(或任何其他方便的计算机代数系统)在几秒钟内用三行代码计算出 10^10^6 美元的答案。

(这在 75Mhz Pentium 上已经够久了……)

于 2009-07-10T01:49:39.233 回答
42

注意:这仅显示方式的数量。

斯卡拉函数:

def countChange(money: Int, coins: List[Int]): Int =
  if (money == 0) 1
  else if (coins.isEmpty || money < 0) 0
  else countChange(money - coins.head, coins) + countChange(money, coins.tail)
于 2013-09-18T07:00:50.273 回答
27

我赞成递归解决方案。你有一些面额列表,如果最小的面额可以平分任何剩余的货币金额,这应该可以正常工作。

基本上,您从最大面额转移到最小面额。
递归地,

  1. 您有一个当前要填写的总数,以及一个最大的面额(还剩 1 个以上)。如果只剩下 1 个面额,则只有一种方法可以填充总数。您可以使用当前面额的 0 到 k 个副本,使得 k * cur 面额 <= 总计。
  2. 对于 0 到 k,使用修改后的总和新的最大面额调用函数。
  3. 将结果从 0 加到 k。这就是您可以从当前面额向下填充总数的多少种方式。返回这个号码。

这是我提出的问题的 python 版本,售价 200 美分。我有 1463 种方式。此版本打印所有组合和最终计数总数。

#!/usr/bin/python

# find the number of ways to reach a total with the given number of combinations

cents = 200
denominations = [25, 10, 5, 1]
names = {25: "quarter(s)", 10: "dime(s)", 5 : "nickel(s)", 1 : "pennies"}

def count_combs(left, i, comb, add):
    if add: comb.append(add)
    if left == 0 or (i+1) == len(denominations):
        if (i+1) == len(denominations) and left > 0:
           if left % denominations[i]:
               return 0
           comb.append( (left/denominations[i], demoninations[i]) )
           i += 1
        while i < len(denominations):
            comb.append( (0, denominations[i]) )
            i += 1
        print(" ".join("%d %s" % (n,names[c]) for (n,c) in comb))
        return 1
    cur = denominations[i]
    return sum(count_combs(left-x*cur, i+1, comb[:], (x,cur)) for x in range(0, int(left/cur)+1))

count_combs(cents, 0, [], None)

于 2009-07-09T23:33:30.463 回答
12

斯卡拉函数:

def countChange(money: Int, coins: List[Int]): Int = {

def loop(money: Int, lcoins: List[Int], count: Int): Int = {
  // if there are no more coins or if we run out of money ... return 0 
  if ( lcoins.isEmpty || money < 0) 0
  else{
    if (money == 0 ) count + 1   
/* if the recursive subtraction leads to 0 money left - a prefect division hence return count +1 */
    else
/* keep iterating ... sum over money and the rest of the coins and money - the first item and the full set of coins left*/
      loop(money, lcoins.tail,count) + loop(money - lcoins.head,lcoins, count)
  }
}

val x = loop(money, coins, 0)
Console println x
x
}
于 2013-03-29T02:52:19.667 回答
10

这里有一些绝对简单的 C++ 代码来解决确实要求显示所有组合的问题。

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
    if (argc != 2)
    {
        printf("usage: change amount-in-cents\n");
        return 1;
    }

    int total = atoi(argv[1]);

    printf("quarter\tdime\tnickle\tpenny\tto make %d\n", total);

    int combos = 0;

    for (int q = 0; q <= total / 25; q++)
    {
        int total_less_q = total - q * 25;
        for (int d = 0; d <= total_less_q / 10; d++)
        {
            int total_less_q_d = total_less_q - d * 10;
            for (int n = 0; n <= total_less_q_d / 5; n++)
            {
                int p = total_less_q_d - n * 5;
                printf("%d\t%d\t%d\t%d\n", q, d, n, p);
                combos++;
            }
        }
    }

    printf("%d combinations\n", combos);

    return 0;
}

但我对仅计算组合数量的子问题很感兴趣。我怀疑它有一个封闭式方程。

于 2009-07-10T00:26:48.173 回答
8

子问题是一个典型的动态规划问题。

/* Q: Given some dollar value in cents (e.g. 200 = 2 dollars, 1000 = 10 dollars),
      find the number of combinations of coins that make up the dollar value.
      There are only penny, nickel, dime, and quarter.
      (quarter = 25 cents, dime = 10 cents, nickel = 5 cents, penny = 1 cent) */
/* A:
Reference: http://andrew.neitsch.ca/publications/m496pres1.nb.pdf
f(n, k): number of ways of making change for n cents, using only the first
         k+1 types of coins.

          +- 0,                        n < 0 || k < 0
f(n, k) = |- 1,                        n == 0
          +- f(n, k-1) + f(n-C[k], k), else
 */

#include <iostream>
#include <vector>
using namespace std;

int C[] = {1, 5, 10, 25};

// Recursive: very slow, O(2^n)
int f(int n, int k)
{
    if (n < 0 || k < 0)
        return 0;

    if (n == 0)
        return 1;

    return f(n, k-1) + f(n-C[k], k); 
}

// Non-recursive: fast, but still O(nk)
int f_NonRec(int n, int k)
{
    vector<vector<int> > table(n+1, vector<int>(k+1, 1));

    for (int i = 0; i <= n; ++i)
    {
        for (int j = 0; j <= k; ++j)
        {
            if (i < 0 || j < 0) // Impossible, for illustration purpose
            {
                table[i][j] = 0;
            }
            else if (i == 0 || j == 0) // Very Important
            {
                table[i][j] = 1;
            }
            else
            {
                // The recursion. Be careful with the vector boundary
                table[i][j] = table[i][j-1] + 
                    (i < C[j] ? 0 : table[i-C[j]][j]);
            }
        }
    }

    return table[n][k];
}

int main()
{
    cout << f(100, 3) << ", " << f_NonRec(100, 3) << endl;
    cout << f(200, 3) << ", " << f_NonRec(200, 3) << endl;
    cout << f(1000, 3) << ", " << f_NonRec(1000, 3) << endl;

    return 0;
}
于 2013-07-29T02:49:49.080 回答
8

该代码使用Java来解决这个问题,它也可以工作......这种方法可能不是一个好主意,因为循环太多,但它确实是一种直接的方式。

public class RepresentCents {

    public static int sum(int n) {

        int count = 0;
        for (int i = 0; i <= n / 25; i++) {
            for (int j = 0; j <= n / 10; j++) {
                for (int k = 0; k <= n / 5; k++) {
                    for (int l = 0; l <= n; l++) {
                        int v = i * 25 + j * 10 + k * 5 + l;
                        if (v == n) {
                            count++;
                        } else if (v > n) {
                            break;
                        }
                    }
                }
            }
        }
        return count;
    }

    public static void main(String[] args) {
        System.out.println(sum(100));
    }
}
于 2014-01-10T04:51:11.863 回答
7

这是一个非常古老的问题,但我在 java 中提出了一个递归解决方案,它似乎比其他所有解决方案都小,所以这里是 -

 public static void printAll(int ind, int[] denom,int N,int[] vals){
    if(N==0){
        System.out.println(Arrays.toString(vals));
        return;
    }
    if(ind == (denom.length))return;             
    int currdenom = denom[ind];
    for(int i=0;i<=(N/currdenom);i++){
        vals[ind] = i;
        printAll(ind+1,denom,N-i*currdenom,vals);
    }
 }

改进:

  public static void printAllCents(int ind, int[] denom,int N,int[] vals){
        if(N==0){
            if(ind < denom.length) {
                for(int i=ind;i<denom.length;i++)
                    vals[i] = 0;
            }
            System.out.println(Arrays.toString(vals));
            return;
        }
        if(ind == (denom.length)) {
            vals[ind-1] = 0;
            return;             
        }

        int currdenom = denom[ind];
        for(int i=0;i<=(N/currdenom);i++){ 
                vals[ind] = i;
                printAllCents(ind+1,denom,N-i*currdenom,vals);
        }
     }
于 2013-08-28T02:49:07.697 回答
6

让 C(i,J) 使用集合 J 中的值赚取 i 美分的组合集合。

您可以将 C 定义为:

在此处输入图像描述

(first(J) 以确定的方式获取集合中的一个元素)

结果证明是一个非常递归的函数......如果你使用记忆化,效率相当高;)

于 2009-07-09T23:31:40.497 回答
5

半破解来解决独特的组合问题 - 强制降序:

$denoms = [1,5,10,25]
def all_combs(sum,last)
  如果 sum == 0 返回 1
  返回 $denoms.select{|d| d &le sum && d &le last}.inject(0) {|total,denom|
           总计+所有梳子(总和-denom,denom)}
结尾

这将运行缓慢,因为它不会被记忆,但你明白了。

于 2009-07-10T00:10:05.257 回答
4
# short and sweet with O(n) table memory    

#include <iostream>
#include <vector>

int count( std::vector<int> s, int n )
{
  std::vector<int> table(n+1,0);

  table[0] = 1;
  for ( auto& k : s )
    for(int j=k; j<=n; ++j)
      table[j] += table[j-k];

  return table[n];
}

int main()
{
  std::cout <<  count({25, 10, 5, 1}, 100) << std::endl;
  return 0;
}
于 2013-10-25T16:57:57.680 回答
3

这是我在 Python 中的答案。它不使用递归:

def crossprod (list1, list2):
    output = 0
    for i in range(0,len(list1)):
        output += list1[i]*list2[i]

    return output

def breakit(target, coins):
    coinslimit = [(target / coins[i]) for i in range(0,len(coins))]
    count = 0
    temp = []
    for i in range(0,len(coins)):
        temp.append([j for j in range(0,coinslimit[i]+1)])


    r=[[]]
    for x in temp:
        t = []
        for y in x:
            for i in r:
                t.append(i+[y])
        r = t

    for targets in r:
        if crossprod(targets, coins) == target:
            print targets
            count +=1
    return count




if __name__ == "__main__":
    coins = [25,10,5,1]
    target = 78
    print breakit(target, coins)

示例输出

    ...
    1 ( 10 cents)  2 ( 5 cents)  58 ( 1 cents)  
    4 ( 5 cents)  58 ( 1 cents)  
    1 ( 10 cents)  1 ( 5 cents)  63 ( 1 cents)  
    3 ( 5 cents)  63 ( 1 cents)  
    1 ( 10 cents)  68 ( 1 cents)  
    2 ( 5 cents)  68 ( 1 cents)  
    1 ( 5 cents)  73 ( 1 cents)  
    78 ( 1 cents)  
    Number of solutions =  121
于 2013-12-16T02:11:24.580 回答
3
var countChange = function (money,coins) {
  function countChangeSub(money,coins,n) {
    if(money==0) return 1;
    if(money<0 || coins.length ==n) return 0;
    return countChangeSub(money-coins[n],coins,n) + countChangeSub(money,coins,n+1);
  }
  return countChangeSub(money,coins,0);
}
于 2016-04-02T12:29:25.420 回答
2

两者:从高到低遍历所有面额,取其中一个面额,从要求的总数中减去,然后在余数上递归(将可用面额限制为等于或低于当前迭代值。)

于 2009-07-09T23:22:29.690 回答
2

如果货币系统允许,一个简单的贪心算法,从最高价值的货币开始,尽可能多地获取每种硬币。

否则,需要动态规划来快速找到最优解,因为这个问题本质上是背包问题

例如,如果一个货币系统有硬币:{13, 8, 1},贪心解决方案将改变 24 作为{13, 8, 1, 1, 1},但真正的最优解决方案是{8, 8, 8}

编辑:我认为我们正在以最佳方式进行更改,而不是列出所有更改一美元的方法。我最近的采访询问了如何做出改变,所以我在完成阅读问题之前就跳了起来。

于 2009-07-10T00:28:53.137 回答
2

我知道这是一个非常古老的问题。我正在寻找正确的答案,但找不到任何简单而令人满意的东西。花了我一些时间,但能够记下一些东西。

function denomination(coins, original_amount){
    var original_amount = original_amount;
    var original_best = [ ];

    for(var i=0;i<coins.length; i++){
      var amount = original_amount;
      var best = [ ];
      var tempBest = [ ]
      while(coins[i]<=amount){
        amount = amount - coins[i];
        best.push(coins[i]);
      }
      if(amount>0 && coins.length>1){
        tempBest = denomination(coins.slice(0,i).concat(coins.slice(i+1,coins.length)), amount);
        //best = best.concat(denomination(coins.splice(i,1), amount));
      }
      if(tempBest.length!=0 || (best.length!=0 && amount==0)){
        best = best.concat(tempBest);
        if(original_best.length==0 ){
          original_best = best
        }else if(original_best.length > best.length ){
          original_best = best;
        }  
      }
    }
    return original_best;  
  }
  denomination( [1,10,3,9] , 19 );

这是一个 javascript 解决方案并使用递归。

于 2013-06-30T19:28:29.620 回答
2

这是一个简单的递归算法,它先取一张钞票,然后递归取一张较小的钞票,直到达到总和,然后再取另一张相同面额的钞票,然后再次递归。请参阅下面的示例输出以获取说明。

var bills = new int[] { 100, 50, 20, 10, 5, 1 };

void PrintAllWaysToMakeChange(int sumSoFar, int minBill, string changeSoFar)
{
    for (int i = minBill; i < bills.Length; i++)
    {
        var change = changeSoFar;
        var sum = sumSoFar;

        while (sum > 0)
        {
            if (!string.IsNullOrEmpty(change)) change += " + ";
            change += bills[i];

            sum -= bills[i]; 
            if (sum > 0)
            {
                PrintAllWaysToMakeChange(sum, i + 1, change);
            }
        }

        if (sum == 0)
        {
            Console.WriteLine(change);
        }
    }
}

PrintAllWaysToMakeChange(15, 0, "");

打印以下内容:

10 + 5
10 + 1 + 1 + 1 + 1 + 1
5 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
5 + 5 + 1 + 1 + 1 + 1 + 1
5 + 5 + 5
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
于 2017-06-14T00:33:28.447 回答
2

在 Scala 编程语言中,我会这样做:

 def countChange(money: Int, coins: List[Int]): Int = {

       money match {
           case 0 => 1
           case x if x < 0 => 0
           case x if x >= 1 && coins.isEmpty => 0
           case _ => countChange(money, coins.tail) + countChange(money - coins.head, coins)

       }

  }
于 2016-11-11T23:02:49.690 回答
1

我的这篇博客文章解决了XKCD 漫画人物的背包类问题。items对dict 和value的简单更改exactcost也将为您的问题产生所有解决方案。

如果问题是要找到成本最低的找零,那么对于硬币和目标金额的某些组合,使用尽可能多的最高价值硬币的天真的贪心算法很可能会失败。例如,如果有值 1、3 和 4 的硬币;并且目标数量是 6,那么贪心算法可能会建议价值 4、1 和 1 的三个硬币,因为很容易看出您可以使用两个硬币,每个硬币的值为 3。

  • 稻田。
于 2009-07-14T20:39:03.573 回答
1

呵呵,我现在觉得很傻。下面有一个过于复杂的解决方案,我将保留它,因为它毕竟是一个解决方案。一个简单的解决方案是:

// Generate a pretty string
val coinNames = List(("quarter", "quarters"), 
                     ("dime", "dimes"), 
                     ("nickel", "nickels"), 
                     ("penny", "pennies"))
def coinsString = 
  Function.tupled((quarters: Int, dimes: Int, nickels:Int, pennies: Int) => (
    List(quarters, dimes, nickels, pennies) 
    zip coinNames // join with names
    map (t => (if (t._1 != 1) (t._1, t._2._2) else (t._1, t._2._1))) // correct for number
    map (t => t._1 + " " + t._2) // qty name
    mkString " "
  ))

def allCombinations(amount: Int) = 
 (for{quarters <- 0 to (amount / 25)
      dimes <- 0 to ((amount - 25*quarters) / 10)
      nickels <- 0 to ((amount - 25*quarters - 10*dimes) / 5)
  } yield (quarters, dimes, nickels, amount - 25*quarters - 10*dimes - 5*nickels)
 ) map coinsString mkString "\n"

这是另一个解决方案。该解决方案基于观察到每个硬币都是其他硬币的倍数,因此可以用它们来表示它们。

// Just to make things a bit more readable, as these routines will access
// arrays a lot
val coinValues = List(25, 10, 5, 1)
val coinNames = List(("quarter", "quarters"), 
                     ("dime", "dimes"), 
                     ("nickel", "nickels"), 
                     ("penny", "pennies"))
val List(quarter, dime, nickel, penny) = coinValues.indices.toList


// Find the combination that uses the least amount of coins
def leastCoins(amount: Int): Array[Int] =
  ((List(amount) /: coinValues) {(list, coinValue) =>
    val currentAmount = list.head
    val numberOfCoins = currentAmount / coinValue
    val remainingAmount = currentAmount % coinValue
    remainingAmount :: numberOfCoins :: list.tail
  }).tail.reverse.toArray

// Helper function. Adjust a certain amount of coins by
// adding or subtracting coins of each type; this could
// be made to receive a list of adjustments, but for so
// few types of coins, it's not worth it.
def adjust(base: Array[Int], 
           quarters: Int, 
           dimes: Int, 
           nickels: Int, 
           pennies: Int): Array[Int] =
  Array(base(quarter) + quarters, 
        base(dime) + dimes, 
        base(nickel) + nickels, 
        base(penny) + pennies)

// We decrease the amount of quarters by one this way
def decreaseQuarter(base: Array[Int]): Array[Int] =
  adjust(base, -1, +2, +1, 0)

// Dimes are decreased this way
def decreaseDime(base: Array[Int]): Array[Int] =
  adjust(base, 0, -1, +2, 0)

// And here is how we decrease Nickels
def decreaseNickel(base: Array[Int]): Array[Int] =
  adjust(base, 0, 0, -1, +5)

// This will help us find the proper decrease function
val decrease = Map(quarter -> decreaseQuarter _,
                   dime -> decreaseDime _,
                   nickel -> decreaseNickel _)

// Given a base amount of coins of each type, and the type of coin,
// we'll produce a list of coin amounts for each quantity of that particular
// coin type, up to the "base" amount
def coinSpan(base: Array[Int], whichCoin: Int) = 
  (List(base) /: (0 until base(whichCoin)).toList) { (list, _) =>
    decrease(whichCoin)(list.head) :: list
  }

// Generate a pretty string
def coinsString(base: Array[Int]) = (
  base 
  zip coinNames // join with names
  map (t => (if (t._1 != 1) (t._1, t._2._2) else (t._1, t._2._1))) // correct for number
  map (t => t._1 + " " + t._2)
  mkString " "
)

// So, get a base amount, compute a list for all quarters variations of that base,
// then, for each combination, compute all variations of dimes, and then repeat
// for all variations of nickels.
def allCombinations(amount: Int) = {
  val base = leastCoins(amount)
  val allQuarters = coinSpan(base, quarter)
  val allDimes = allQuarters flatMap (base => coinSpan(base, dime))
  val allNickels = allDimes flatMap (base => coinSpan(base, nickel))
  allNickels map coinsString mkString "\n"
}

因此,对于 37 个硬币,例如:

scala> println(allCombinations(37))
0 quarter 0 dimes 0 nickels 37 pennies
0 quarter 0 dimes 1 nickel 32 pennies
0 quarter 0 dimes 2 nickels 27 pennies
0 quarter 0 dimes 3 nickels 22 pennies
0 quarter 0 dimes 4 nickels 17 pennies
0 quarter 0 dimes 5 nickels 12 pennies
0 quarter 0 dimes 6 nickels 7 pennies
0 quarter 0 dimes 7 nickels 2 pennies
0 quarter 1 dime 0 nickels 27 pennies
0 quarter 1 dime 1 nickel 22 pennies
0 quarter 1 dime 2 nickels 17 pennies
0 quarter 1 dime 3 nickels 12 pennies
0 quarter 1 dime 4 nickels 7 pennies
0 quarter 1 dime 5 nickels 2 pennies
0 quarter 2 dimes 0 nickels 17 pennies
0 quarter 2 dimes 1 nickel 12 pennies
0 quarter 2 dimes 2 nickels 7 pennies
0 quarter 2 dimes 3 nickels 2 pennies
0 quarter 3 dimes 0 nickels 7 pennies
0 quarter 3 dimes 1 nickel 2 pennies
1 quarter 0 dimes 0 nickels 12 pennies
1 quarter 0 dimes 1 nickel 7 pennies
1 quarter 0 dimes 2 nickels 2 pennies
1 quarter 1 dime 0 nickels 2 pennies
于 2009-07-10T01:28:13.800 回答
1
public class Coins {

static int ac = 421;
static int bc = 311;
static int cc = 11;

static int target = 4000;

public static void main(String[] args) {


    method2();
}

  public static void method2(){
    //running time n^2

    int da = target/ac;
    int db = target/bc;     

    for(int i=0;i<=da;i++){         
        for(int j=0;j<=db;j++){             
            int rem = target-(i*ac+j*bc);               
            if(rem < 0){                    
                break;                  
            }else{                  
                if(rem%cc==0){                  
                    System.out.format("\n%d, %d, %d ---- %d + %d + %d = %d \n", i, j, rem/cc, i*ac, j*bc, (rem/cc)*cc, target);                     
                }                   
            }                   
        }           
    }       
}
 }
于 2013-12-29T06:17:32.383 回答
1

我在 O'reily 的“Python For Data Analysis”一书中找到了这段简洁的代码。它使用惰性实现和 int 比较,我认为它可以修改为使用小数的其他面额。让我知道它是如何为您工作的!

def make_change(amount, coins=[1, 5, 10, 25], hand=None):
 hand = [] if hand is None else hand
 if amount == 0:
 yield hand
 for coin in coins:
 # ensures we don't give too much change, and combinations are unique
 if coin > amount or (len(hand) > 0 and hand[-1] < coin):
 continue
 for result in make_change(amount - coin, coins=coins,
 hand=hand + [coin]):
 yield result

于 2015-02-20T03:12:32.517 回答
1

这是一个 C# 函数:

    public static void change(int money, List<int> coins, List<int> combination)
    {
        if(money < 0 || coins.Count == 0) return;
        if (money == 0)
        {
            Console.WriteLine((String.Join("; ", combination)));
            return;
        }

        List<int> copy = new List<int>(coins);
        copy.RemoveAt(0);
        change(money, copy, combination);

        combination = new List<int>(combination) { coins[0] };
        change(money - coins[0], coins, new List<int>(combination));
    }

像这样使用它:

change(100, new List<int>() {5, 10, 25}, new List<int>());

它打印:

25; 25; 25; 25
10; 10; 10; 10; 10; 25; 25
10; 10; 10; 10; 10; 10; 10; 10; 10; 10
5; 10; 10; 25; 25; 25
5; 10; 10; 10; 10; 10; 10; 10; 25
5; 5; 10; 10; 10; 10; 25; 25
5; 5; 10; 10; 10; 10; 10; 10; 10; 10; 10
5; 5; 5; 10; 25; 25; 25
5; 5; 5; 10; 10; 10; 10; 10; 10; 25
5; 5; 5; 5; 10; 10; 10; 25; 25
5; 5; 5; 5; 10; 10; 10; 10; 10; 10; 10; 10
5; 5; 5; 5; 5; 25; 25; 25
5; 5; 5; 5; 5; 10; 10; 10; 10; 10; 25
5; 5; 5; 5; 5; 5; 10; 10; 25; 25
5; 5; 5; 5; 5; 5; 10; 10; 10; 10; 10; 10; 10
5; 5; 5; 5; 5; 5; 5; 10; 10; 10; 10; 25
5; 5; 5; 5; 5; 5; 5; 5; 10; 25; 25
5; 5; 5; 5; 5; 5; 5; 5; 10; 10; 10; 10; 10; 10
5; 5; 5; 5; 5; 5; 5; 5; 5; 10; 10; 10; 25
5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 25; 25
5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 10; 10; 10; 10; 10
5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 10; 10; 25
5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 10; 10; 10; 10
5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 10; 25
5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 10; 10; 10
5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 25
5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 10; 10
5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 10
5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5
于 2018-01-18T10:38:53.750 回答
1

下面是一个查找所有货币组合的python程序。这是一个具有 order(n) 时间的动态规划解决方案。钱是1,5,10,25

我们从第 1 行钱遍历到第 25 行钱(4 行)。如果我们在计算组合数量时仅考虑货币 1,则货币 1 行包含计数。第 5 行通过将相同最终货币的货币 r 行中的计数加上其自己行中的前 5 个计数(当前位置减去 5)来生成每一列。行钱 10 使用行钱 5,其中包含 1,5 的计数和前 10 个计数的加法(当前位置减 10)。行钱 25 使用行钱 10,其中包含行钱 1、5、10 加上前 25 个计数的计数。

例如,numbers[1][12] = numbers[0][12] + numbers[1][7] (7 = 12-5) 结果为 3 = 1 + 2;numbers[3][12] = numbers[2][12] + numbers[3][9] (-13 = 12-25) 导致 4 = 0 + 4,因为 -13 小于 0。

def cntMoney(num):
    mSz = len(money)
    numbers = [[0]*(1+num) for _ in range(mSz)]
    for mI in range(mSz): numbers[mI][0] = 1
    for mI,m in enumerate(money):
        for i in range(1,num+1):
            numbers[mI][i] = numbers[mI][i-m] if i >= m else 0
            if mI != 0: numbers[mI][i] += numbers[mI-1][i]
        print('m,numbers',m,numbers[mI])
    return numbers[mSz-1][num]

money = [1,5,10,25]
    num = 12
    print('money,combinations',num,cntMoney(num))

output:    
('m,numbers', 1, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
('m,numbers', 5, [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3])
('m,numbers', 10, [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 4, 4, 4])
('m,numbers', 25, [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 4, 4, 4])
('money,combinations', 12, 4)
于 2019-12-02T17:36:40.867 回答
1

这是子涵回答的改进。当面额只有 1 美分时,就会出现大量不必要的循环。

它是直观且非递归的。

    public static int Ways2PayNCents(int n)
    {
        int numberOfWays=0;
        int cent, nickel, dime, quarter;
        for (quarter = 0; quarter <= n/25; quarter++)
        {
            for (dime = 0; dime <= n/10; dime++)
            {
                for (nickel = 0; nickel <= n/5; nickel++)
                {
                    cent = n - (quarter * 25 + dime * 10 + nickel * 5);
                    if (cent >= 0)
                    {
                        numberOfWays += 1;
                        Console.WriteLine("{0},{1},{2},{3}", quarter, dime, nickel, cent);
                    }                   
                }
            }
        }
        return numberOfWays;            
    }
于 2017-03-11T20:07:48.727 回答
1
/*
* make a list of all distinct sets of coins of from the set of coins to
* sum up to the given target amount.
* Here the input set of coins is assumed yo be {1, 2, 4}, this set MUST
* have the coins sorted in ascending order.
* Outline of the algorithm:
* 
* Keep track of what the current coin is, say ccn; current number of coins
* in the partial solution, say k; current sum, say sum, obtained by adding
* ccn; sum sofar, say accsum:
*  1) Use ccn as long as it can be added without exceeding the target
*     a) if current sum equals target, add cc to solution coin set, increase
*     coin coin in the solution by 1, and print it and return
*     b) if current sum exceeds target, ccn can't be in the solution, so
*        return
*     c) if neither of the above, add current coin to partial solution,
*        increase k by 1 (number of coins in partial solution), and recuse
*  2) When current denomination can no longer be used, start using the
*     next higher denomination coins, just like in (1)
*  3) When all denominations have been used, we are done
*/

#include <iostream>
#include <cstdlib>

using namespace std;

// int num_calls = 0;
// int num_ways = 0;

void print(const int coins[], int n);

void combine_coins(
                   const int denoms[], // coins sorted in ascending order
                   int n,              // number of denominations
                   int target,         // target sum
                   int accsum,         // accumulated sum
                   int coins[],        // solution set, MUST equal
                                       // target / lowest denom coin
                   int k               // number of coins in coins[]
                  )
{

    int  ccn;   // current coin
    int  sum;   // current sum

    // ++num_calls;

    for (int i = 0; i < n; ++i) {
        /*
         * skip coins of lesser denomination: This is to be efficient
         * and also avoid generating duplicate sequences. What we need
         * is combinations and without this check we will generate
         * permutations.
         */
        if (k > 0 && denoms[i] < coins[k - 1])
            continue;   // skip coins of lesser denomination

        ccn = denoms[i];

        if ((sum = accsum + ccn) > target)
            return;     // no point trying higher denominations now


        if (sum == target) {
            // found yet another solution
            coins[k] = ccn;
            print(coins, k + 1);
            // ++num_ways;
            return;
        }

        coins[k] = ccn;
        combine_coins(denoms, n, target, sum, coins, k + 1);
    }
}

void print(const int coins[], int n)
{
    int s = 0;
    for (int i = 0; i < n; ++i) {
        cout << coins[i] << " ";
        s += coins[i];
    }
    cout << "\t = \t" << s << "\n";

}

int main(int argc, const char *argv[])
{

    int denoms[] = {1, 2, 4};
    int dsize = sizeof(denoms) / sizeof(denoms[0]);
    int target;

    if (argv[1])
        target = atoi(argv[1]);
    else
        target = 8;

    int *coins = new int[target];


    combine_coins(denoms, dsize, target, 0, coins, 0);

    // cout << "num calls = " << num_calls << ", num ways = " << num_ways << "\n";

    return 0;
}
于 2017-11-09T07:50:51.843 回答
1

简单的java解决方案:

public static void main(String[] args) 
{    
    int[] denoms = {4,2,3,1};
    int[] vals = new int[denoms.length];
    int target = 6;
    printCombinations(0, denoms, target, vals);
}


public static void printCombinations(int index, int[] denom,int target, int[] vals)
{
  if(target==0)
  {
    System.out.println(Arrays.toString(vals));
    return;
  }
  if(index == denom.length) return;   
  int currDenom = denom[index];
  for(int i = 0; i*currDenom <= target;i++)
  {
    vals[index] = i;
    printCombinations(index+1, denom, target - i*currDenom, vals);
    vals[index] = 0;
  }
}
于 2017-05-20T21:11:01.457 回答
0

Java解决方案

import java.util.Arrays;
import java.util.Scanner;


public class nCents {



public static void main(String[] args) {

    Scanner input=new Scanner(System.in);
    int cents=input.nextInt();
    int num_ways [][] =new int [5][cents+1];

    //putting in zeroes to offset
    int getCents[]={0 , 0 , 5 , 10 , 25};
    Arrays.fill(num_ways[0], 0);
    Arrays.fill(num_ways[1], 1);

    int current_cent=0;
    for(int i=2;i<num_ways.length;i++){

        current_cent=getCents[i];

        for(int j=1;j<num_ways[0].length;j++){
            if(j-current_cent>=0){
                if(j-current_cent==0){
                    num_ways[i][j]=num_ways[i-1][j]+1;
                }else{
                    num_ways[i][j]=num_ways[i][j-current_cent]+num_ways[i-1][j];
                }
            }else{
                num_ways[i][j]=num_ways[i-1][j];
            }


        }


    }



    System.out.println(num_ways[num_ways.length-1][num_ways[0].length-1]);

}

}

于 2014-06-26T00:45:30.500 回答
0

下面的 java 解决方案也将打印不同的组合。容易理解。想法是

总和 5

解决方案是

    5 - 5(i) times 1 = 0
        if(sum = 0)
           print i times 1
    5 - 4(i) times 1 = 1
    5 - 3 times 1 = 2
        2 -  1(j) times 2 = 0
           if(sum = 0)
              print i times 1 and j times 2
    and so on......

如果每个循环中的剩余总和小于面额,即如果剩余总和 1 小于 2,则只需中断循环

完整代码如下

如有错误请指正

public class CoinCombinbationSimple {
public static void main(String[] args) {
    int sum = 100000;
    printCombination(sum);
}

static void printCombination(int sum) {
    for (int i = sum; i >= 0; i--) {
        int sumCopy1 = sum - i * 1;
        if (sumCopy1 == 0) {
            System.out.println(i + " 1 coins");
        }
        for (int j = sumCopy1 / 2; j >= 0; j--) {
            int sumCopy2 = sumCopy1;
            if (sumCopy2 < 2) {
                break;
            }
            sumCopy2 = sumCopy1 - 2 * j;
            if (sumCopy2 == 0) {
                System.out.println(i + " 1 coins " + j + " 2 coins ");
            }
            for (int k = sumCopy2 / 5; k >= 0; k--) {
                int sumCopy3 = sumCopy2;
                if (sumCopy2 < 5) {
                    break;
                }
                sumCopy3 = sumCopy2 - 5 * k;
                if (sumCopy3 == 0) {
                    System.out.println(i + " 1 coins " + j + " 2 coins "
                            + k + " 5 coins");
                }
            }
        }
    }
}

}

于 2016-09-09T12:01:32.813 回答
0

以下是python解决方案:

    x = []
    dic = {}
    def f(n,r):
        [a,b,c,d] = r
        if not dic.has_key((n,a,b,c,d)): dic[(n,a,b,c,d)] = 1
        if n>=25:
            if not dic.has_key((n-25,a+1,b,c,d)):f(n-25,[a+1,b,c,d])
            if not dic.has_key((n-10,a,b+1,c,d)):f(n-10,[a,b+1,c,d])
            if not dic.has_key((n-5,a,b,c+1,d)):f(n-5,[a,b,c+1,d])
            if not dic.has_key((n-1,a,b,c,d+1)):f(n-1,[a,b,c,d+1])
        elif n>=10:
            if not dic.has_key((n-10,a,b+1,c,d)):f(n-10,[a,b+1,c,d])
            if not dic.has_key((n-5,a,b,c+1,d)):f(n-5,[a,b,c+1,d])
            if not dic.has_key((n-1,a,b,c,d+1)):f(n-1,[a,b,c,d+1])
        elif n>=5:
            if not dic.has_key((n-5,a,b,c+1,d)):f(n-5,[a,b,c+1,d])
            if not dic.has_key((n-1,a,b,c,d+1)):f(n-1,[a,b,c,d+1])
        elif n>=1:
            if not dic.has_key((n-1,a,b,c,d+1)):f(n-1,[a,b,c,d+1])
        else:
            if r not in x:
                x.extend([r])

    f(100, [0,0,0,0])
    print x
于 2017-02-28T08:54:13.763 回答
0

我在 C# 中实现了这个谜题,我认为它与其他答案有点不同。此外,我添加了注释以使我的算法更易于理解。这是一个非常好的谜题。

从较大的硬币开始,查看所有硬币并Q,D,N用便士填充剩余部分。

所以我可以从 0 季度、0 角钱和 0 镍开始,其余的都是便士

对于每个硬币,我有($Amount / $Change) + 1,其中 $Amount 是输入参数,$Change 是 [Q]uarter 或 [D]ime 或 [N]ickel。所以,假设输入参数是$1,

  • 我有 ($1 / 0.25) + 1 = 5 个季度选择 (0, 1, 2, 3, 4) -qLoop我的代码中的变量
  • 对于相同的 1 美元,我将有 ($1 / 0.10) + 1 = 11 个选项用于 Dime (0, 1, 2 ,3, 4, 5, 6, 7, 8, 9, 10) -dLoop我的代码中的变量
  • 镍也是如此,我将有 ($1 / 0.05) + 1 = 21 选项(0 到 20)——nLoop我的代码中的变量

请注意,在每个循环中,我都必须使用外循环的提醒。

例如,如果我选择 1 个季度(其中 q 为 1),我还有 1 - 0.25 美元用于内部循环(Dime 循环)等等

static void CoinCombination(decimal A)
{
    decimal[] coins = new decimal[] { 0.25M, 0.10M, 0.05M, 0.01M };

    // Loop for Quarters
    int qLoop = (int)(A / coins[0]) + 1;
    for (int q = 0; q < qLoop; q++)
    {
        string qS = $"{q} quarter(s), ";
        decimal qAmount = A - (q * coins[0]);
        Console.Write(qS);

        // Loop for Dimes
        int dLoop = (int)(qAmount / coins[1]) + 1;
        for (int d = 0; d < dLoop; d++)
        {
            if (d > 0)
                Console.Write(qS);
            string dS = $"{d} dime(s), ";
            decimal dAmount = qAmount - (d * coins[1]);
            Console.Write(dS);

            // Loop for Nickels
            int nLoop = (int)(dAmount / coins[2]) + 1;
            for (int n = 0; n < nLoop; n++)
            {
                if (n > 0)
                    Console.Write($"{qS}{dS}");
                string nS = $"{n} nickel(s), ";
                decimal nAmount = dAmount - (n * coins[2]);
                Console.Write(nS);

                // Fill up with pennies the remainder
                int p = (int)(nAmount / coins[3]);
                string pS = $"{p} penny(s)";
                Console.Write(pS);

                Console.WriteLine();
            }
            Console.WriteLine();
        }
        Console.WriteLine();
    }
}

输出

输出

于 2021-03-30T22:32:13.217 回答
0

这是一个基于 python 的解决方案,它使用递归和记忆,导致 O(mxn) 的复杂性

    def get_combinations_dynamic(self, amount, coins, memo):
    end_index = len(coins) - 1
    memo_key = str(amount)+'->'+str(coins)
    if memo_key in memo:
        return memo[memo_key]
    remaining_amount = amount
    if amount < 0:
        return []
    if amount == 0:
        return [[]]
    combinations = []
    if len(coins) <= 1:
        if amount % coins[0] == 0:
            combination = []
            for i in range(amount // coins[0]):
                combination.append(coins[0])
            list.sort(combination)
            if combination not in combinations:
                combinations.append(combination)
    else:
        k = 0
        while remaining_amount >= 0:
            sub_combinations = self.get_combinations_dynamic(remaining_amount, coins[:end_index], memo)
            for combination in sub_combinations:
                temp = combination[:]
                for i in range(k):
                    temp.append(coins[end_index])
                list.sort(temp)
                if temp not in combinations:
                    combinations.append(temp)
            k += 1
            remaining_amount -= coins[end_index]
    memo[memo_key] = combinations
    return combinations
于 2017-02-03T21:39:07.420 回答
0

将金额分解为面额的 PHP 代码:

//Define the denominations    
private $denominations = array(1000, 500, 200, 100, 50, 40, 20, 10, 5, 1);
/**
 * S# countDenomination() function
 * 
 * @author Edwin Mugendi <edwinmugendi@gmail.com>
 * 
 * Count denomination
 * 
 * @param float $original_amount Original amount
 * 
 * @return array with denomination and count
 */
public function countDenomination($original_amount) {
    $amount = $original_amount;
    $denomination_count_array = array();
    foreach ($this->denominations as $single_denomination) {

        $count = floor($amount / $single_denomination);

        $denomination_count_array[$single_denomination] = $count;

        $amount = fmod($amount, $single_denomination);
    }//E# foreach statement

    var_dump($denomination_count_array);
    return $denomination_count_array;
    //return $denomination_count_array;
}

//E# countDenomination() 函数

于 2017-05-24T04:30:35.350 回答
0

这里有很多变化,但在任何地方都找不到组合数量的 PHP 解决方案,所以我将添加一个。

/**
 * @param int $money The total value
 * @param array $coins The coin denominations
 * @param int $sum The countable sum
 * @return int
 */
function getTotalCombinations($money, $coins, &$sum = 0){
  if ($money == 0){
    return $sum++;
  } else if (empty($coins) || $money < 0){
    return $sum;
  } else {
      $firstCoin = array_pop(array_reverse($coins));
      getTotalCombinations($money - $firstCoin, $coins, $sum) + getTotalCombinations($money, array_diff($coins, [$firstCoin]), $sum);
  }
  return $sum;
}


$totalCombinations = getTotalCombinations($money, $coins);
于 2017-08-10T09:09:40.030 回答
0

以下单行输入Mathematica产生所需的结果

parts[n_]:=Flatten[Table[{(n-i)/25,(i-j)/10,(j-k)/5,k},{i,n,0,-25},{j,i,0,-10},{k,j,0,-5}],2]

该表通过迭代有多少较大种类的硬币适合 的所有方式来简单地构建所有组合n,同时对其余种类的硬币重复相同的步骤。在任何其他编程语言中,实现都应该同样简单。

输出是带有符号的元素列表:

{number of quarters, number of dimes, number of nickels, number of cents}

构造背后的直觉可以从一个例子中读出:

parts[51]

在此处输入图像描述

于 2021-02-10T21:17:50.643 回答
-1

我使用一个非常简单的循环来解决这个问题,我正在使用 Isogenic 游戏引擎在 HTML5 中编写一个 BlackJack 游戏。您可以看到二十一点游戏的视频,该视频显示了用于根据牌上方二十一点桌上的下注值进行下注的筹码:http: //bit.ly/yUF6iw

在本例中,betValue 等于您希望分成“硬币”或“筹码”或其他任何东西的总价值。

您可以将chipValues 数组项设置为您的硬币或筹码的价值。确保物品从最低价值到最高价值(一分钱、五分钱、一角钱、四分之一)排序。

这是JavaScript:

// Set the total that we want to divide into chips
var betValue = 191;

// Set the chip values
var chipValues = [
    1,
    5,
    10,
    25
];

// Work out how many of each chip is required to make up the bet value
var tempBet = betValue;
var tempChips = [];
for (var i = chipValues.length - 1; i >= 0; i--) {
    var chipValue = chipValues[i];
    var divided = Math.floor(tempBet / chipValue);

    if (divided >= 1) {
        tempChips[i] = divided;
        tempBet -= divided * chipValues[i];
    }

    if (tempBet == 0) { break; }
}

// Display the chips and how many of each make up the betValue
for (var i in tempChips) {
    console.log(tempChips[i] + ' of ' + chipValues[i]);
}

您显然不需要执行最后一个循环,它仅用于 console.log 最终数组值。

于 2012-01-16T16:19:27.960 回答
-2
public static int calcCoins(int cents){
        return coins(cents,new int[cents+1]);
    }
    public static int coins(int cents,int[] memo){
        if(memo[cents] != 0){
            return -1;
        }
        int sum = 0;
        int arr[] = {25,10,5,1};

        for (int i = 0; i < arr.length; i++) {
            if(cents/arr[i] != 0){
                int temp = coins(cents-arr[i],memo);
                if(temp == 0){
                    sum+=1;
                } else if(temp == -1){
                    sum +=0;
                }
                else{
                    sum += temp;
                }
            } 
        }
        memo[cents] = sum;
        return sum;
    }
于 2016-06-05T23:15:22.980 回答