7

我发现了类似的问题和答案,如this one。然而,正如我所尝试的,这个 SFINAE 测试只有在被测试的成员被直接定义在被测试的类中时才会成功。例如以下, class BD1printHAS而其他两个 print NOT HAS。有没有办法判断一个类是否有成员,是自己定义的,还是基类,这种情况下基类的名字是未知的。动机是我想编写一个通用函数,如果它存在,它将调用某个方法(无论是否来自基,参数的类型是通用的,留下其可能基的类型)。

#include <iostream>

class HasFoo
{
    public :

    typedef char Small;
    typedef struct {char; char;} Large;

    template <typename C, void (C::*) ()> class SFINAE {};

    template <typename C> static Small test (SFINAE<C, &C::foo> *)
    {
        std::cout << "HAS" << std::endl;
    }

    template <typename C> static Large test (...)
    {
        std::cout << "NOT HAS" << std::endl;
    }
};

class B
{
    public :

    void foo () {}
};

class D1 : public B
{
    public :

    void foo () {} // overide
};

class D2 : public B
{
    public :

    using B::foo;
};

class D3 : public B {};

int main ()
{
    HasFoo::test<B>(0);
    HasFoo::test<D1>(0);
    HasFoo::test<D2>(0);
    HasFoo::test<D3>(0);
}
4

3 回答 3

9

在 C++03 中,很遗憾这是不可能的,抱歉。

在 C++11 中由于decltype. decltype允许您编写表达式来推断其结果的类型,因此您可以完美地命名基类的成员。如果方法是模板,则 SFINAE 应用于decltype表达式。

#include <iostream>

template <typename T>
auto has_foo(T& t) -> decltype(t.foo(), bool()) { return true; }

bool has_foo(...) { return false; }


struct Base {
    void foo() {}
};

struct Derived1: Base {
    void foo() {}
};

struct Derived2: Base {
    using Base::foo;
};

struct Derived3: Base {
};

int main() {
    Base b; Derived1 d1; Derived2 d2; Derived3 d3;

    std::cout << has_foo(b) << " "
              << has_foo(d1) << " "
              << has_foo(d2) << " "
              << has_foo(d3) << "\n";
}

不幸的是,ideone 的 gcc 版本太旧了,clang 3.0 也好不到哪里去。

于 2012-06-13T09:28:30.693 回答
5

不幸的是,至少在 C++03 中是不可能的,我也怀疑在 C++11 中。

几个重要的点:

  1. 建议的 SFINAE 仅在该方法适用时才有效public
  2. 即使 SFINAE 适用于基本方法,第 (1) 点也适用;因为对于privateprotected继承 SFINAE 可能最终没用
  3. 假设您可能只想处理public方法/继承,则HasFoo::test<>可以增强代码以获取多个参数,其中也可以传递基类; std::is_base_of<>可用于进一步验证基础/派生关系;然后对基类也应用相同的逻辑
于 2012-06-13T05:13:01.187 回答
3

有一种方法可以确定类层次结构是否具有给定名称的成员。它使用 SFINAE 并通过创建歧义在名称查找中引入替换失败。此外,还有一种方法可以测试公共成员是否可调用;但是,无法确定成员是否是 SFINAE 的公开成员。

是一个例子:

#include <iostream>

template < typename T >
struct has_foo
{
  typedef char yes;
  typedef char no[2];

  // Type that has a member with the name that will be checked.
  struct fallback { int foo; };

  // Type that will inherit from both T and mixin to guarantee that mixed_type
  // has the desired member.  If T::foo exists, then &mixed_type::foo will be
  // ambiguous.  Otherwise, if T::foo does not exists, then &mixed_type::foo
  // will successfully resolve to fallback::foo.
  struct mixed_type: T, fallback {};

  template < typename U, U > struct type_check {};

  // If substituation does not fail, then &U::foo is not ambiguous, indicating
  // that mixed_type only has one member named foo (i.e. fallback::foo).
  template < typename U > static no&  test( type_check< int (fallback::*),
                                                        &U::foo >* = 0 );

  // Substituation failed, so &U::foo is ambiguous, indicating that mixed_type
  // has multiple members named foo.  Thus, T::foo exists.
  template < typename U > static yes& test( ... );

  static const bool value = sizeof( yes ) == 
                            sizeof( test< mixed_type >( NULL ) );
};

namespace detail {
  class yes {};
  class no{ yes m[2]; };

  // sizeof will be used to determine what function is selected given an
  // expression.  An overloaded comma operator will be used to branch based
  // on types at compile-time.
  //   With ( helper, anything-other-than-no, yes ) return yes.
  //   With ( helper, no, yes ) return no.
  struct helper {};

  // Return helper.
  template < typename T > helper operator,( helper, const T& ); 

  // Overloads.
  yes operator,( helper, yes ); // For ( helper, yes ) return yes.
  no  operator,( helper, no );  // For ( helper, no  ) return no.
  no  operator,( no,     yes ); // For ( no,     yes ) return no.
} // namespace detail

template < typename T >
struct can_call_foo
{ 
  struct fallback { ::detail::no foo( ... ) const; };

  // Type that will inherit from T and fallback, this guarantees
  // that mixed_type has a foo method.
  struct mixed_type: T, fallback
  {
    using T::foo;
    using fallback::foo;
  };

  // U has a foo member.
  template < typename U, bool = has_foo< U >::value >
  struct impl
  {
    // Create the type sequence.
    // - Start with helper to guarantee the custom comma operator is used.
    // - This is evaluationg the expression, not executing, so cast null
    //   to a mixed_type pointer, then invoke foo.  If T::foo is selected,
    //   then the comma operator returns helper.  Otherwise, fooback::foo
    //   is selected, and the comma operator returns no.
    // - Either helper or no was returned from the first comma operator
    //   evaluation.  If ( helper, yes ) remains, then yes will be returned.
    //   Otherwise, ( no, yes ) remains; thus no will be returned. 
    static const bool value = sizeof( ::detail::yes ) == 
                              sizeof( ::detail::helper(),
                                      ((mixed_type*)0)->foo(),
                                      ::detail::yes() );
  };

  // U does not have a 'foo' member.
  template < typename U >
  struct impl< U, false >
  {
    static const bool value = false;
  };

  static const bool value = impl< T >::value;
};

// Types containing a foo member function.
struct B     { void foo();   };
struct D1: B { bool foo();   }; // hide B::foo
struct D2: B { using B::foo; }; // no-op, as no hiding occured.
struct D3: B {               }; 

// Type that do not have a member foo function.
struct F {};

// Type that has foo but it is not callable via T::foo().
struct G  { int foo;         };
struct G1 { bool foo( int ); };

int main ()
{
  std::cout << "B:  " << has_foo< B  >::value << " - "
                      << can_call_foo< B >::value << "\n"
            << "D1: " << has_foo< D1 >::value << " - "
                      << can_call_foo< D1 >::value << "\n"
            << "D2: " << has_foo< D2 >::value << " - "
                      << can_call_foo< D2 >::value << "\n"
            << "D3: " << has_foo< D3 >::value << " - "
                      << can_call_foo< D3 >::value << "\n"
            << "F:  " << has_foo< F  >::value << " - "
                      << can_call_foo< F >::value << "\n"
            << "G:  " << has_foo< G  >::value << " - "
                      << can_call_foo< G >::value << "\n"
            << "G1: " << has_foo< G1  >::value << " - "
                      << can_call_foo< G1 >::value << "\n"
            << std::endl;
  return 0;
}

产生以下输出:

乙:1 - 1
D1:1 - 1
D2:1 - 1
D3:1 - 1
F: 0 - 0
克:1 - 0
G1:1 - 0

has_foo仅检查是否存在名为 的成员foo。它不验证是否foo是可调用成员(公共成员函数或作为函子的公共成员)。

can_call_foo检查是否T::foo()可调用。如果T::foo()不公开,则会发生编译器错误。据我所知,没有办法通过 SFINAE 阻止这种情况。如需更完整、更出色但相当复杂的解决方案,请查看此处

于 2012-06-29T06:15:33.240 回答