我想运行一个 map reduce 示例:
package my.test;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
import org.apache.commons.cli.BasicParser;
import org.apache.commons.cli.CommandLine;
import org.apache.commons.cli.CommandLineParser;
import org.apache.commons.cli.HelpFormatter;
import org.apache.commons.cli.Options;
import org.apache.commons.cli.ParseException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.MultiTableOutputFormat;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import org.apache.log4j.Logger;
/**
* This class demonstrates the use of the MultiTableOutputFormat class.
* Using this class we can write the output of a Hadoop map reduce program
* into different HBase table.
*
* @version 1.0 19 Jul 2011
* @author Wildnove
*/
public class TestMultiTable extends Configured implements Tool {
private static final Logger LOG = Logger.getLogger(TestMultiTable.class);
private static final String CMDLINE = "com.wildnove.tutorial.TestMultiTable <inputFile> [-n name] [-s]";
public static void main(String[] args) throws Exception {
int res = ToolRunner.run(new TestMultiTable(), args);
System.exit(res);
}
@Override
public int run(String[] args) throws Exception {
HelpFormatter help = new HelpFormatter();
Options options = new Options();
options.addOption("h", "help", false, "print program usage");
options.addOption("n", "name", true, "sets job name");
CommandLineParser parser = new BasicParser();
CommandLine cline;
try {
cline = parser.parse(options, args);
args = cline.getArgs();
if (args.length < 1) {
help.printHelp(CMDLINE, options);
return -1;
}
} catch (ParseException e) {
System.out.println(e);
e.printStackTrace();
help.printHelp(CMDLINE, options);
return -1;
}
String name = null;
try {
if (cline.hasOption('n'))
name = cline.getOptionValue('n');
else
name = "wildnove.com - Tutorial MultiTableOutputFormat ";
Configuration conf = getConf();
FileSystem fs = FileSystem.get(conf);
Path inputFile = new Path(fs.makeQualified(new Path(args[0])).toUri().getPath());
if (!getMultiTableOutputJob(name, inputFile).waitForCompletion(true))
return -1;
} catch (Exception e) {
System.out.println(e);
e.printStackTrace();
help.printHelp(CMDLINE, options);
return -1;
}
return 0;
}
/**
* Here we configure our job to use MultiTableOutputFormat class as map reduce output.
* Note that we use 1 reduce only for debugging purpose, but you can use more than 1 reduce.
*/
private Job getMultiTableOutputJob(String name, Path inputFile) throws IOException {
if (LOG.isInfoEnabled()) {
LOG.info(name + " starting...");
LOG.info("computing file: " + inputFile);
}
Job job = new Job(getConf(), name);
job.setJarByClass(TestMultiTable.class);
job.setMapperClass(Mapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
FileInputFormat.addInputPath(job, inputFile);
job.setOutputFormatClass(MultiTableOutputFormat.class);
job.setNumReduceTasks(1);
job.setReducerClass(Reducer.class);
return job;
}
private static class Mapper extends org.apache.hadoop.mapreduce.Mapper<LongWritable, Text, Text, Text> {
private Text outKey = new Text();
private Text outValue = new Text();
/**
* The map method splits the csv file according to this structure
* brand,model,size (e.g. Cadillac,Seville,Midsize) and output all data using
* brand as key and the couple model,size as value.
*/
@Override
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] valueSplitted = value.toString().split(",");
if (valueSplitted.length == 3) {
String brand = valueSplitted[0];
String model = valueSplitted[1];
String size = valueSplitted[2];
outKey.set(brand);
outValue.set(model + "," + size);
context.write(outKey, outValue);
}
}
}
private static class Reducer extends org.apache.hadoop.mapreduce.Reducer<Text, Text, ImmutableBytesWritable, Writable> {
/**
* The reduce method fill the TestCars table with all csv data,
* compute some counters and save those counters into the TestBrandsSizes table.
* So we use two different HBase table as output for the reduce method.
*/
@Override
protected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
Map<String, Integer> statsSizeCounters = new HashMap<String, Integer>();
String brand = key.toString();
// We are receiving all models,size grouped by brand.
for (Text value : values) {
String[] valueSplitted = value.toString().split(",");
if (valueSplitted.length == 2) {
String model = valueSplitted[0];
String size = valueSplitted[1];
// Fill the TestCars table
ImmutableBytesWritable putTable = new ImmutableBytesWritable(Bytes.toBytes("TestCars"));
byte[] putKey = Bytes.toBytes(brand + "," + model);
byte[] putFamily = Bytes.toBytes("Car");
Put put = new Put(putKey);
// qualifier brand
byte[] putQualifier = Bytes.toBytes("brand");
byte[] putValue = Bytes.toBytes(brand);
put.add(putFamily, putQualifier, putValue);
// qualifier model
putQualifier = Bytes.toBytes("model");
putValue = Bytes.toBytes(model);
put.add(putFamily, putQualifier, putValue);
// qualifier size
putQualifier = Bytes.toBytes("size");
putValue = Bytes.toBytes(size);
put.add(putFamily, putQualifier, putValue);
context.write(putTable, put);
// Compute some counters: number of different sizes for a brand
if (!statsSizeCounters.containsKey(size))
statsSizeCounters.put(size, 1);
else
statsSizeCounters.put(size, statsSizeCounters.get(size) + 1);
}
}
for (Entry<String, Integer> entry : statsSizeCounters.entrySet()) {
// Fill the TestBrandsSizes table
ImmutableBytesWritable putTable = new ImmutableBytesWritable(Bytes.toBytes("TestBrandsSizes"));
byte[] putKey = Bytes.toBytes(brand);
byte[] putFamily = Bytes.toBytes("BrandSizes");
Put put = new Put(putKey);
// We can use as qualifier the sizes
byte[] putQualifier = Bytes.toBytes(entry.getKey());
byte[] putValue = Bytes.toBytes(entry.getValue());
put.add(putFamily, putQualifier, putValue);
context.write(putTable, put);
}
}
}
}
使用 Eclipse 选项构建到 jar mt.jar :jar 文件
运行 mapreduce:
[zhouhh@Hadoop48 ~]$ HADOOP_CLASSPATH=
${HBASE_HOME}/bin/hbase classpath
:${HADOOP_HOME}/bin/hadoop classpath
${HADOOP_HOME}/bin/hadoop jar mt.jar cars.csv 12/06/11 20:14:33 INFO test.TestMultiTable: wildnove.com - 教程 MultiTableOutputFormat 开始... 12/06/11 20:14:33 INFO test.TestMultiTable:计算文件:/user/zhouhh/cars.csv 12/06/11 20:14:34 INFO input.FileInputFormat:要处理的总输入路径:1 12/06/11 20:14:34 INFO util .NativeCodeLoader:加载了本机 Hadoop 库 12/06/11 20:14:34 WARN snappy.LoadSnappy:Snappy 本机库未加载 12/06/11 20:14:35 信息 mapred.JobClient:正在运行的作业:job_201206111811_0012 12/ 06/11 20:14:36 信息 mapred.JobClient:映射 0% 减少 0% 12/06/11 20:14:42 信息 mapred.JobClient:任务 ID:尝试_201206111811_0012_m_000002_0,状态:失败 java.lang.RuntimeException:java。 lang.ClassNotFoundException:org.apache.hadoop.hbase.mapreduce。org.apache.hadoop.mapreduce.JobContext.getOutputFormatClass(JobContext.java:235) 的 org.apache.hadoop.mapred.Task 的 org.apache.hadoop.conf.Configuration.getClass(Configuration.java:867) 的 MultiTableOutputFormat。在 org.apache.hadoop.mapred.Child$4.run(Child.java:255) 在 java 的 org.apache.hadoop.mapred.MapTask.run(MapTask.java:353) 初始化(Task.java:513)。 security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:415) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1121) at org.apache。 hadoop.mapred.Child.main(Child.java:249) 原因:java.lang.ClassNotFoundException: org.apache.hadoop.hbase.mapreduce.MultiTableOutputFormat at java.net.URLClassLoader$1。在 java.net.URLClassLoader.findClass(URLClassLoader.java:354) 在 java.security.AccessController.doPrivileged(Native Method) 在 java.net.URLClassLoader$1.run(URLClassLoader.java:355) 运行(URLClassLoader.java:366) ) 在 java.lang.ClassLoader.loadClass(ClassLoader.java:423) 在 sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:308) 在 java.lang.ClassLoader.loadClass(ClassLoader.java:356) 在 java .lang.Class.forName0(Native Method) at java.lang.Class.forName(Class.java:264) at org.apache.hadoop.conf.Configuration.getClassByName(Configuration.java:820) at org.apache.hadoop .conf.Configuration.getClass(Configuration.java:865)doPrivileged(Native Method) at java.net.URLClassLoader.findClass(URLClassLoader.java:354) at java.lang.ClassLoader.loadClass(ClassLoader.java:423) at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java: 308) 在 java.lang.ClassLoader.loadClass(ClassLoader.java:356) 在 java.lang.Class.forName0(Native Method) 在 java.lang.Class.forName(Class.java:264) 在 org.apache.hadoop .conf.Configuration.getClassByName(Configuration.java:820) 在 org.apache.hadoop.conf.Configuration.getClass(Configuration.java:865)doPrivileged(Native Method) at java.net.URLClassLoader.findClass(URLClassLoader.java:354) at java.lang.ClassLoader.loadClass(ClassLoader.java:423) at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java: 308) 在 java.lang.ClassLoader.loadClass(ClassLoader.java:356) 在 java.lang.Class.forName0(Native Method) 在 java.lang.Class.forName(Class.java:264) 在 org.apache.hadoop .conf.Configuration.getClassByName(Configuration.java:820) 在 org.apache.hadoop.conf.Configuration.getClass(Configuration.java:865)loadClass(ClassLoader.java:356) at java.lang.Class.forName0(Native Method) at java.lang.Class.forName(Class.java:264) at org.apache.hadoop.conf.Configuration.getClassByName(Configuration. java:820) 在 org.apache.hadoop.conf.Configuration.getClass(Configuration.java:865)loadClass(ClassLoader.java:356) at java.lang.Class.forName0(Native Method) at java.lang.Class.forName(Class.java:264) at org.apache.hadoop.conf.Configuration.getClassByName(Configuration. java:820) 在 org.apache.hadoop.conf.Configuration.getClass(Configuration.java:865)
汽车.csv:
[zhouhh@Hadoop48 ~]$ cat cars.csv Acura,Integra,Small Acura,Legend,Midsize Audi,90,Compact Audi,100,Midsize BMW,535i,Midsize Buick,Century,Midsize Buick,LeSabre,Large Buick,Roadmaster,大别克,里维埃拉,中型凯迪拉克,德维尔,大凯迪拉克,塞维利亚,中型
MultiTableOutputFormat.class 在 Hbase.0.94.jar
[zhouhh@Hadoop48 ~]$ echo $HADOOP_CLASSPATH |tr ':' '\n' | grep hbase /home/zhouhh/hbase-0.94.0/conf /home/zhouhh/hbase-0.94.0 /home/zhouhh/hbase-0.94.0/hbase-0.94.0.jar /home/zhouhh/hbase-0.94 .0/hbase-0.94.0-tests.jar /home/zhouhh/hbase-0.94.0/lib/activation-1.1.jar /home/zhouhh/hbase-0.94.0/lib/asm-3.1.jar /home /zhouhh/hbase-0.94.0/lib/avro-1.5.3.jar /home/zhouhh/hbase-0.94.0/lib/avro-ipc-1.5.3.jar /home/zhouhh/hbase-0.94.0 /lib/commons-beanutils-1.7.0.jar /home/zhouhh/hbase-0.94.0/lib/commons-beanutils-core-1.8.0.jar /home/zhouhh/hbase-0.94.0/lib/commons -cli-1.2.jar /home/zhouhh/hbase-0.94.0/lib/commons-codec-1.4.jar /home/zhouhh/hbase-0.94.0/lib/commons-collections-3.2.1.jar /home /zhouhh/hbase-0.94.0/lib/commons-configuration-1.6.jar /home/zhouhh/hbase-0.94.0/lib/commons-digester-1.8.
我已经尝试了很多方法,但同样的错误仍然存在。
任何人都可以帮助我吗?谢谢