我需要为一组有向无环图找到从节点 0 开始的最长路径。我正在使用维基百科的最长路径问题算法。我的算法适用于大多数图形,但对于其他图形,它没有给出正确的结果。算法是:
private static int DAGLongestPath(Graph G) {
int n = G.order();
int[] topOrder = new int[n];
topOrder = topSort2(G);
for (int i = 0; i < topOrder.length; i++) {
topOrder[i] -= 1;
}
int[] lengthTo = new int[n];
for (int i = 0; i < n; i++) lengthTo[i] = 0;
for (int i = 0; i < topOrder.length; i++) { //for each vertex v in topOrder(G) do
ArrayList<Integer> neighbors = new ArrayList<Integer>();
neighbors = G.neighbors(topOrder[i]);
int v = topOrder[i];
for (int j = 0; j < neighbors.size(); j++) {
int w = neighbors.get(j);
if(lengthTo[w] <= lengthTo[v] + 1) {
lengthTo[w] = lengthTo[v] + 1;
}
}
}
int max = 0;
for (int i = 0; i < n; i++ ) {
max = Math.max(max, lengthTo[i]);
}
return max;
}
图实现使用邻接列表来存储图。如果我通过如下图表:
9 // Number of nodes
0: 1 2
1: 2 3 4
2: 4 8
3: 5 6
4: 6 7 8
5:
6:
7:
8: 7
我得到答案 5,这是正确的。但是,如果我通过图表:
8 // Number of nodes
0: 2 3
1:
2:
3: 5
4: 5
5: 2
6: 7
7: 4
然后我得到 2,而正确答案应该是 3。
我使用的 TopSort2 算法是:
public static int[] topSort2(Graph G){
int n = G.order();
int[] sort = new int[n];
int[] inDeg = new int[n];
for (int i=0; i<n; i++) inDeg[i] = G.inDegree(i);
int cnt = 0;
boolean progress = true;
//
while (progress){
progress = false;
for (int v=0; v<n; v++){
if (inDeg[v] == 0){
sort[v] = ++cnt;
progress = true;
inDeg[v] = -1;
ArrayList<Integer> nbrs = G.neighbors(v);
for (int u : nbrs){
inDeg[u] = inDeg[u] - 1;
}
}
} // for v
} // while nodes exist with inDegree == 0.
return sort;
}
DFS算法是:
private static int doDFS(Graph G, int v, int[] PreOrder, int[] PostOrder, countPair cnt){
PreOrder[v] = cnt.inc1();
int dfsTotal = 0;
ArrayList<Integer> nbrs = G.neighbors(v);
for (int i : nbrs) {
if (PreOrder[i] == 0) {
int dfsTemp = doDFS(G, i, PreOrder, PostOrder, cnt);
dfsTotal = Math.max(dfsTotal, dfsTemp);
}
}
PostOrder[v] = cnt.inc2();
if(nbrs.size() > 0 ) {
dfsTotal++;
}
return dfsTotal;
}
public static int DFS(Graph G, int v, int[] PreOrder, int[] PostOrder){
int n = G.order();
int total = 0;
for (int i=0; i<n; i++) PreOrder[i] = PostOrder[i] = 0;
countPair cnt = new countPair();
total = doDFS(G, v, PreOrder, PostOrder, cnt);
return total;
}
private static class countPair { // private counters for DFS search
int cnt1, cnt2;
int inc1() { return ++cnt1; }
int inc2() { return ++cnt2; }
}