我试图了解如何解决递归关系。我理解到我们必须简化的程度。
T(N) = T(N-1) + N-1 Initial condition: T(1)=O(1)=1
T(N) = T(N-1) + N-1
T(N-1) = T(N-2) + N-2
T(N-2) = T(N-3) + N-3
……
T(2) = T(1) + 1
**Summing up right and left sides**
T(N) + T(N-1) + T(N-2) + T(N-3) + …. T(3) + T(2) =
= T(N-1) + T(N-2) + T(N-3) + …. T(3) + T(2) + T(1) +
(N-1) + (N-2) + (N-3) + …. +3 + 2 + 1
** Canceling like terms and simplifying **
T(N) = T(1) + N*(N-1)/2 1 + N*(N - 1)/2
T(N) = 1 + N*(N - 1)/2
我真的不明白最后一部分。我了解取消类似条款,但不了解以下简化的工作原理:
T(N) = T(1) + (N-1) + (N-2) + (N-3) + …. +3 + 2 + 1
T(N) = T(1) + N*(N-1)/2 1 + N*(N - 1)/2
第二行是如何从第一行衍生出来的?对我来说没有任何意义。
如果有人可以帮助我理解这一点,那将是一个很大的帮助。谢谢 =)