我正在阅读 CLRS Algorithm book 来学习快速选择算法,我们可以简单地实现该算法。
package selection;
import java.util.Random;
/**
* This class will calculate and print Nth ascending order element
* from an unsorted array in expected time complexity O(N), where N is the
* number of elements in the array.
*
* The important part of this algorithm the randomizedPartition() method.
*
* @author kmandal
*
*/
public class QuickSelect {
public static void main(String[] args) {
int[] A = { 7, 1, 2, 6, 0, 1, 96, -1, -100, 10000 };
for (int i = 0; i < A.length; i++) {
System.out.println("The " + i + "th ascending order element is "
+ quickSelect(A, 0, A.length - 1, i));
}
}
/**
* Similar to Quick sort algorithm partitioning approach works, but after
* that instead of recursively work on both halves here will be recursing
* into desired half. This step ensure to the expected running time to be
* O(N).
*
* @param A
* @param p
* @param r
* @param i
* @return
*/
private static int quickSelect(int[] A, int p, int r, int i) {
if (p == r) {
return A[p];
}
int partitionIndex = randomizedPartition(A, p, r);
if (i == partitionIndex) {
return A[i];
} else if (i < partitionIndex) {// element is present in left side of
// partition
return quickSelect(A, p, partitionIndex - 1, i);
} else {
return quickSelect(A, partitionIndex + 1, r, i);// element is
// present in right
// side of partition
}
}
/**
*
* Similar to Quick sort algorithm this method is randomly select pivot
* element index. Then it swap the random pivot element index with right
* most element. This random selection step is expecting to make the
* partitioning balanced. Then in-place rearranging the array to make all
* elements in the left side of the pivot element are less than pivot
* element and the right side elements are equals or grater than the pivot
* element. Finally return partition index.
*
* @param A
* @param p
* @param r
* @return
*/
private static int randomizedPartition(int[] A, int p, int r) {
int partitionIndex = p;
int random = p + new Random().nextInt(r - p + 1);// select
// pseudo random
// element
swap(A, random, r);// swap with right most element
int pivot = A[r];// select the pivot element
for (int i = p; i < A.length - 1; i++) {
if (A[i] < pivot) {
swap(A, i, partitionIndex);
partitionIndex++;
}
}
swap(A, partitionIndex, r);
return partitionIndex;
}
/**
* Swapping 2 elements in an array.
*
* @param A
* @param i
* @param j
*/
private static void swap(int[] A, int i, int j) {
if (i != j && A[i] != A[j]) {
int temp = A[i];
A[i] = A[j];
A[j] = temp;
}
}
}
Output:
The 0th ascending order element is -100
The 1th ascending order element is -1
The 2th ascending order element is 0
The 3th ascending order element is 1
The 4th ascending order element is 1
The 5th ascending order element is 2
The 6th ascending order element is 6
The 7th ascending order element is 7
The 8th ascending order element is 96
The 9th ascending order element is 10000