144

给定一个项目列表,回想一下列表的模式是最常出现的项目。

我想知道如何创建一个可以找到列表模式的函数,但如果列表没有模式(例如,列表中的所有项目只出现一次),则会显示一条消息。我想在不导入任何功能的情况下制作此功能。我正在尝试从头开始制作自己的功能。

4

26 回答 26

187

您可以使用该max功能和一个键。看看python max function using 'key' 和 lambda expression

max(set(lst), key=lst.count)
于 2015-01-24T20:08:44.247 回答
112

您可以使用具有-esque 功能Counter的包中提供的collectionsmode

from collections import Counter
data = Counter(your_list_in_here)
data.most_common()   # Returns all unique items and their counts
data.most_common(1)  # Returns the highest occurring item

注意:计数器是 python 2.7 中的新功能,在早期版本中不可用。

于 2012-05-29T11:07:16.980 回答
72

Python 3.4 包含方法statistics.mode,所以很简单:

>>> from statistics import mode
>>> mode([1, 1, 2, 3, 3, 3, 3, 4])
 3

您可以在列表中包含任何类型的元素,而不仅仅是数字:

>>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
 'red'
于 2014-03-17T15:19:11.847 回答
33

借鉴一些统计软件,即SciPyMATLAB,它们只返回最小的最常见值,因此如果两个值同样频繁地出现,则返回其中最小的一个。希望一个例子会有所帮助:

>>> from scipy.stats import mode

>>> mode([1, 2, 3, 4, 5])
(array([ 1.]), array([ 1.]))

>>> mode([1, 2, 2, 3, 3, 4, 5])
(array([ 2.]), array([ 2.]))

>>> mode([1, 2, 2, -3, -3, 4, 5])
(array([-3.]), array([ 2.]))

你有什么理由不能遵守这个约定吗?

于 2012-05-29T11:12:01.900 回答
29

有许多简单的方法可以在 Python 中找到列表的模式,例如:

import statistics
statistics.mode([1,2,3,3])
>>> 3

或者,您可以通过计数找到最大值

max(array, key = array.count)

这两种方法的问题在于它们不适用于多种模式。第一个返回错误,而第二个返回第一个模式。

为了找到一个集合的模式,你可以使用这个函数:

def mode(array):
    most = max(list(map(array.count, array)))
    return list(set(filter(lambda x: array.count(x) == most, array)))
于 2015-08-10T03:26:02.867 回答
7

扩展列表为空时不起作用的社区答案,这里是模式的工作代码:

def mode(arr):
        if arr==[]:
            return None
        else:
            return max(set(arr), key=arr.count)
于 2018-12-31T09:42:27.220 回答
5

如果您对最小、最大或所有模式感兴趣:

def get_small_mode(numbers, out_mode):
    counts = {k:numbers.count(k) for k in set(numbers)}
    modes = sorted(dict(filter(lambda x: x[1] == max(counts.values()), counts.items())).keys())
    if out_mode=='smallest':
        return modes[0]
    elif out_mode=='largest':
        return modes[-1]
    else:
        return modes
于 2017-02-18T20:26:09.663 回答
2

我写了这个方便的函数来找到模式。

def mode(nums):
    corresponding={}
    occurances=[]
    for i in nums:
            count = nums.count(i)
            corresponding.update({i:count})

    for i in corresponding:
            freq=corresponding[i]
            occurances.append(freq)

    maxFreq=max(occurances)

    keys=corresponding.keys()
    values=corresponding.values()

    index_v = values.index(maxFreq)
    global mode
    mode = keys[index_v]
    return mode
于 2013-12-26T21:22:00.963 回答
2

简短,但有点丑陋:

def mode(arr) :
    m = max([arr.count(a) for a in arr])
    return [x for x in arr if arr.count(x) == m][0] if m>1 else None

使用字典,稍微不那么难看:

def mode(arr) :
    f = {}
    for a in arr : f[a] = f.get(a,0)+1
    m = max(f.values())
    t = [(x,f[x]) for x in f if f[x]==m]
    return m > 1 t[0][0] else None
于 2014-08-18T14:03:07.193 回答
2

稍长一点,但可以有多种模式,并且可以获得具有最多计数或混合数据类型的字符串。

def getmode(inplist):
    '''with list of items as input, returns mode
    '''
    dictofcounts = {}
    listofcounts = []
    for i in inplist:
        countofi = inplist.count(i) # count items for each item in list
        listofcounts.append(countofi) # add counts to list
        dictofcounts[i]=countofi # add counts and item in dict to get later
    maxcount = max(listofcounts) # get max count of items
    if maxcount ==1:
        print "There is no mode for this dataset, values occur only once"
    else:
        modelist = [] # if more than one mode, add to list to print out
        for key, item in dictofcounts.iteritems():
            if item ==maxcount: # get item from original list with most counts
                modelist.append(str(key))
        print "The mode(s) are:",' and '.join(modelist)
        return modelist 
于 2016-02-09T21:56:40.837 回答
2

无需任何导入即可找到列表模式的简单代码:

nums = #your_list_goes_here
nums.sort()
counts = dict()
for i in nums:
    counts[i] = counts.get(i, 0) + 1
mode = max(counts, key=counts.get)

在多种模式的情况下,它应该返回最小节点。

于 2020-04-20T14:20:28.027 回答
2

对于要成为 a 的数字mode,它必须比列表中至少一个其他数字出现的次数更多,并且它不能是列表中的唯一数字。因此,我重构了@mathwizurd 的答案(使用该difference方法)如下:

def mode(array):
    '''
    returns a set containing valid modes
    returns a message if no valid mode exists
      - when all numbers occur the same number of times
      - when only one number occurs in the list 
      - when no number occurs in the list 
    '''
    most = max(map(array.count, array)) if array else None
    mset = set(filter(lambda x: array.count(x) == most, array))
    return mset if set(array) - mset else "list does not have a mode!" 

这些测试成功通过:

mode([]) == None 
mode([1]) == None
mode([1, 1]) == None 
mode([1, 1, 2, 2]) == None 
于 2017-12-08T18:40:08.423 回答
1

为什么不只是

def print_mode (thelist):
  counts = {}
  for item in thelist:
    counts [item] = counts.get (item, 0) + 1
  maxcount = 0
  maxitem = None
  for k, v in counts.items ():
    if v > maxcount:
      maxitem = k
      maxcount = v
  if maxcount == 1:
    print "All values only appear once"
  elif counts.values().count (maxcount) > 1:
    print "List has multiple modes"
  else:
    print "Mode of list:", maxitem

它没有一些它应该有的错误检查,但它会在不导入任何函数的情况下找到模式,并且如果所有值只出现一次,它将打印一条消息。它还将检测共享相同最大计数的多个项目,尽管尚不清楚您是否想要这样做。

于 2012-05-29T23:32:06.863 回答
1

此函数返回一个或多个函数的模式(无论有多少),以及数据集中的一个或多个模式的频率。如果没有模式(即所有项目只出现一次),该函数将返回一个错误字符串。这类似于上面的 A_nagpal 的函数,但在我看来,它更完整,而且我认为对于阅读此问题的任何 Python 新手(例如你的真正的)来说更容易理解。

 def l_mode(list_in):
    count_dict = {}
    for e in (list_in):   
        count = list_in.count(e)
        if e not in count_dict.keys():
            count_dict[e] = count
    max_count = 0 
    for key in count_dict: 
        if count_dict[key] >= max_count:
            max_count = count_dict[key]
    corr_keys = [] 
    for corr_key, count_value in count_dict.items():
        if count_dict[corr_key] == max_count:
            corr_keys.append(corr_key)
    if max_count == 1 and len(count_dict) != 1: 
        return 'There is no mode for this data set. All values occur only once.'
    else: 
        corr_keys = sorted(corr_keys)
        return corr_keys, max_count
于 2014-12-30T23:39:44.593 回答
1

数据集的模式是/是该集中出现频率最高的成员。如果有两个成员出现次数最多且次数相同,则数据有两种模式。这称为双峰。

如果有超过 2 种模式,则数据将被称为多模式。如果数据集中所有成员出现的次数相同,则数据集根本没有众数。

以下函数模式()可以在给定的数据列表中查找模式:

import numpy as np; import pandas as pd

def modes(arr):
    df = pd.DataFrame(arr, columns=['Values'])
    dat = pd.crosstab(df['Values'], columns=['Freq'])
    if len(np.unique((dat['Freq']))) > 1:
        mode = list(dat.index[np.array(dat['Freq'] == max(dat['Freq']))])
        return mode
    else:
        print("There is NO mode in the data set")

输出:

# For a list of numbers in x as
In [1]: x = [2, 3, 4, 5, 7, 9, 8, 12, 2, 1, 1, 1, 3, 3, 2, 6, 12, 3, 7, 8, 9, 7, 12, 10, 10, 11, 12, 2]
In [2]: modes(x)
Out[2]: [2, 3, 12]
# For a list of repeated numbers in y as
In [3]: y = [2, 2, 3, 3, 4, 4, 10, 10]
In [4]: modes(y)
Out[4]: There is NO mode in the data set
# For a list of strings/characters in z as
In [5]: z = ['a', 'b', 'b', 'b', 'e', 'e', 'e', 'd', 'g', 'g', 'c', 'g', 'g', 'a', 'a', 'c', 'a']
In [6]: modes(z)
Out[6]: ['a', 'g']

如果我们不想从这些包中导入numpypandas调用任何函数,那么要获得相同的输出,modes()函数可以写成:

def modes(arr):
    cnt = []
    for i in arr:
        cnt.append(arr.count(i))
    uniq_cnt = []
    for i in cnt:
        if i not in uniq_cnt:
            uniq_cnt.append(i)
    if len(uniq_cnt) > 1:
        m = []
        for i in list(range(len(cnt))):
            if cnt[i] == max(uniq_cnt):
                m.append(arr[i])
        mode = []
        for i in m:
            if i not in mode:
                mode.append(i)
        return mode
    else:
        print("There is NO mode in the data set")
于 2020-01-10T20:06:46.920 回答
1

好吧!所以社区已经有很多答案,其中一些使用了另一个功能,而你不想要。
让我们创建我们非常简单易懂的函数。

import numpy as np

#Declare Function Name
def calculate_mode(lst):

下一步是在列表中找到唯一元素及其各自的频率

unique_elements,freq = np.unique(lst, return_counts=True)

获取模式

max_freq = np.max(freq)   #maximum frequency
mode_index = np.where(freq==max_freq)  #max freq index
mode = unique_elements[mode_index]   #get mode by index
return mode

例子

lst =np.array([1,1,2,3,4,4,4,5,6])
print(calculate_mode(lst))
>>> Output [4]
于 2021-07-24T10:00:06.933 回答
1

以下是如何找到列表的均值、中位数和众数:

import numpy as np
from scipy import stats

#to take input
size = int(input())
numbers = list(map(int, input().split()))

print(np.mean(numbers))
print(np.median(numbers))
print(int(stats.mode(numbers)[0]))
于 2019-04-13T19:34:58.833 回答
1

这将返回所有模式:

def mode(numbers)
    largestCount = 0
    modes = []
    for x in numbers:
        if x in modes:
            continue
        count = numbers.count(x)
        if count > largestCount:
            del modes[:]
            modes.append(x)
            largestCount = count
        elif count == largestCount:
            modes.append(x)
    return modes
于 2017-04-03T14:03:15.887 回答
1

对于那些寻找最小模式的人,例如:双模式分布的情况,使用 numpy。

import numpy as np
mode = np.argmax(np.bincount(your_list))
于 2019-12-09T16:10:00.707 回答
0
def mode(inp_list):
    sort_list = sorted(inp_list)
    dict1 = {}
    for i in sort_list:        
            count = sort_list.count(i)
            if i not in dict1.keys():
                dict1[i] = count

    maximum = 0 #no. of occurences
    max_key = -1 #element having the most occurences

    for key in dict1:
        if(dict1[key]>maximum):
            maximum = dict1[key]
            max_key = key 
        elif(dict1[key]==maximum):
            if(key<max_key):
                maximum = dict1[key]
                max_key = key

    return max_key
于 2014-12-13T12:46:49.747 回答
0
def mode(data):
    lst =[]
    hgh=0
    for i in range(len(data)):
        lst.append(data.count(data[i]))
    m= max(lst)
    ml = [x for x in data if data.count(x)==m ] #to find most frequent values
    mode = []
    for x in ml: #to remove duplicates of mode
        if x not in mode:
        mode.append(x)
    return mode
print mode([1,2,2,2,2,7,7,5,5,5,5])
于 2015-04-09T07:16:58.773 回答
0
import numpy as np
def get_mode(xs):
    values, counts = np.unique(xs, return_counts=True)
    max_count_index = np.argmax(counts) #return the index with max value counts
    return values[max_count_index]
print(get_mode([1,7,2,5,3,3,8,3,2]))
于 2019-08-26T07:43:21.773 回答
0

也许尝试以下。它是 O(n) 并返回浮点数(或整数)列表。它经过彻底的自动测试。它使用 collections.defaultdict,但我想您并不反对使用它。它也可以在https://stromberg.dnsalias.org/~strombrg/stddev.html找到

def compute_mode(list_: typing.List[float]) -> typing.List[float]:
    """                       
    Compute the mode of list_.

    Note that the return value is a list, because sometimes there is a tie for "most common value".
                                                                        
    See https://stackoverflow.com/questions/10797819/finding-the-mode-of-a-list
    """                                                                                                        
    if not list_:
        raise ValueError('Empty list')
    if len(list_) == 1:           
        raise ValueError('Single-element list')
    value_to_count_dict: typing.DefaultDict[float, int] = collections.defaultdict(int)
    for element in list_:
        value_to_count_dict[element] += 1
    count_to_values_dict = collections.defaultdict(list)
    for value, count in value_to_count_dict.items():   
        count_to_values_dict[count].append(value)                           
    counts = list(count_to_values_dict)
    if len(counts) == 1:                                                                            
        raise ValueError('All elements in list are the same')          
    maximum_occurrence_count = max(counts)
    if maximum_occurrence_count == 1:
        raise ValueError('No element occurs more than once')
    minimum_occurrence_count = min(counts)
    if maximum_occurrence_count <= minimum_occurrence_count:
        raise ValueError('Maximum count not greater than minimum count')
    return count_to_values_dict[maximum_occurrence_count]
于 2021-02-20T17:22:51.390 回答
0
#function to find mode
def mode(data):  
    modecnt=0
#for count of number appearing
    for i in range(len(data)):
        icount=data.count(data[i])
#for storing count of each number in list will be stored
        if icount>modecnt:
#the loop activates if current count if greater than the previous count 
            mode=data[i]
#here the mode of number is stored 
            modecnt=icount
#count of the appearance of number is stored
    return mode
print mode(data1)
于 2018-03-29T15:06:10.287 回答
0

如果您想要一种清晰的方法,对课堂有用并且仅通过理解使用列表和字典,您可以执行以下操作:

def mode(my_list):
    # Form a new list with the unique elements
    unique_list = sorted(list(set(my_list)))
    # Create a comprehensive dictionary with the uniques and their count
    appearance = {a:my_list.count(a) for a in unique_list} 
    # Calculate max number of appearances
    max_app = max(appearance.values())
    # Return the elements of the dictionary that appear that # of times
    return {k: v for k, v in appearance.items() if v == max_app}
于 2017-06-26T18:32:57.147 回答
0

这是一个简单的函数,它获取列表中出现的第一个模式。它以列表元素作为键和出现次数创建一个字典,然后读取字典值以获取模式。

def findMode(readList):
    numCount={}
    highestNum=0
    for i in readList:
        if i in numCount.keys(): numCount[i] += 1
        else: numCount[i] = 1
    for i in numCount.keys():
        if numCount[i] > highestNum:
            highestNum=numCount[i]
            mode=i
    if highestNum != 1: print(mode)
    elif highestNum == 1: print("All elements of list appear once.")
于 2016-02-14T01:42:17.040 回答