我正在尝试将 KDD cup 99 数据集与 R 一起使用,但不幸的是,我得到了非常糟糕的结果。基本上,预测器是在猜测(交叉验证集上的误差约为 50%)。我的代码中可能有一个错误,但我找不到在哪里。
KDD cup 99 数据集由大约 400 万个示例组成,这些示例分为 4 个不同的攻击类别 + “正常”类别。首先,我将数据集拆分为 5 个文件(每个类一个 + “正常”类一个),然后将非数字数据转换为数字数据。目前,我正在学习“远程到本地”(r2l)课程。我根据有关该主题的论文的结果选择了一些特征。之后,我采样了一些与 r2l 实例数相等的“正常”实例,以避免出现倾斜类的问题。我还用标签“攻击”替换了不同类型的 r2l 攻击的所有标签,这样我就可以训练一个二类分类器。然后我将样本加入到一个新数据集中的 r2l 实例中。最后,
这是我的代码:
r2l <- read.table("kddcup_r2l.data",sep=",",header=T)
#u2r <- read.table("kddcup_u2r.data",sep=",",header=T)
#probe_original <- read.table("kddcup_probe.data",sep=",",header=T)
#dos <- read.table("kddcup_dos.data",sep=",",header=T)
normal <- read.table("kddcup_normal.data",sep=",",header=T)
#probe <- probe_original[sample(1:dim(probe_original)[1],10000),]
# Features selected by the three algorithms svm, lgp and mars
# for the different classes of attack
########################################################################
features.r2l.svm <- c("srv_count","service","duration","count","dst_host_count")
features.r2l.lgp <- c("is_guest_login","num_access_files","dst_bytes","num_failed_logins","logged_in")
features.r2l.mars <- c("srv_count","service","dst_host_srv_count","count","logged_in")
features.r2l.combined <- unique(c(features.r2l.svm,features.r2l.lgp,features.r2l.mars))
# Sample the training set containing the normal labels
# for each class of attack in order to have the same number
# of training data belonging to the "normal" class and the
# "attack" class
#######################################################################
normal_sample.r2l <- normal[sample(1:dim(normal)[1],dim(r2l)[1]),]
# This part was useful before the separation normal/attack because
# attack was composed of different types for each class
######################################################################
normal.r2l.Y <- matrix(normal_sample.r2l[,c("label")])
#######################################################################
# Class of attack Remote to Local (r2l)
#######################################################################
# Select the features according to the algorithms(svm,lgp and mars)
# for this particular type of attack. Combined contains the
# combination of the features selected by the 3 algorithms
#######################################################################
#features.r2l.svm <- c(features.r2l.svm,"label")
r2l_svm <- r2l[,features.r2l.svm]
r2l_lgp <- r2l[,features.r2l.lgp]
r2l_mars <- r2l[,features.r2l.mars]
r2l_combined <- r2l[,features.r2l.combined]
r2l_ALL <- r2l[,colnames(r2l) != "label"]
r2l.Y <- matrix(r2l[,c("label")])
r2l.Y[,1] = "attack"
# Merge the "normal" instances and the "r2l" instances and shuffle the result
###############################################################################
r2l_svm.tr <- rbind(normal_sample.r2l[,features.r2l.svm],r2l_svm)
r2l_svm.tr <- r2l_svm.tr[sample(1:nrow(r2l_svm.tr),replace=F),]
r2l_lgp.tr <- rbind(normal_sample.r2l[,features.r2l.lgp],r2l_lgp)
r2l_lgp.tr <- r2l_lgp.tr[sample(1:nrow(r2l_lgp.tr),replace=F),]
r2l_mars.tr <- rbind(normal_sample.r2l[,features.r2l.mars],r2l_mars)
r2l_mars.tr <- r2l_mars.tr[sample(1:nrow(r2l_mars.tr),replace=F),]
r2l_ALL.tr <- rbind(normal_sample.r2l[,colnames(normal_sample.r2l) != "label"],r2l_ALL)
r2l_ALL.tr <- r2l_ALL.tr[sample(1:nrow(r2l_ALL.tr),replace=F),]
r2l.Y.tr <- rbind(normal.r2l.Y,r2l.Y)
r2l.Y.tr <- matrix(r2l.Y.tr[sample(1:nrow(r2l.Y.tr),replace=F),])
#######################################################################
#
# 10-fold CROSS-VALIDATION to assess the models accuracy
#
#######################################################################
# CV for Remote to Local
########################
cv(r2l_svm.tr, r2l_lgp.tr, r2l_mars.tr, r2l_ALL.tr, r2l.Y.tr)
和交叉验证功能:
cv <- function(svm.tr, lgp.tr, mars.tr, ALL.tr, Y.tr){
Jcv.svm_mean <- NULL
#Compute the size of the cross validation
# =======================================
index=sample(1:dim(svm.tr)[1])
size.CV<-floor(dim(svm.tr)[1]/10)
Jcv.svm <- NULL
#Start 10-fold Cross validation
# =============================
for (i in 1:10) {
# if m is the size of the training set
# (nr of rows in svm.tr for example)
# take n observations for test and (m-n) for training
# with n << m (here n = m/10)
# ===================================================
i.ts<-(((i-1)*size.CV+1):(i*size.CV))
i.tr<-setdiff(index,i.ts)
Y.tr.tr <- as.factor(Y.tr[i.tr])
Y.tr.ts <- as.factor(matrix(Y.tr[i.ts],ncol=1))
svm.tr.tr <- svm.tr[i.tr,]
svm.tr.ts <- svm.tr[i.ts,]
# Get the model for the algorithms
# ==============================================
model.svm <- svm(Y.tr.tr~.,svm.tr.tr,type="C-classification")
# Compute the prediction
# ==============================================
Y.hat.ts.svm <- predict(model.svm,svm.tr.ts)
# Compute the error
# ==============================================
h.svm <- NULL
h.svm <- matrix(Y.hat.ts.svm,ncol=1)
Jcv.svm <- c(Jcv.svm ,sum(!(h.svm == Y.tr.ts))/size.CV)
print(table(h.svm,Y.tr.ts))
}
Jcv.svm_mean <- c(Jcv.svm_mean, mean(Jcv.svm))
d <- 10
print(paste("Jcv.svm_mean: ", round(Jcv.svm_mean,digits=d) ))
}
我得到了非常奇怪的结果。该算法似乎并没有真正看到实例之间的任何差异。这看起来更像是猜测而不是预测。我也尝试过使用“探测”类攻击,但得到了相同的结果。我之前提到的论文在 r2l 类上的准确率为 30%,在探针上的准确率为 60-98%(取决于多项式次数)。
这是交叉验证的 10 折之一的预测:
h.svm(attack) & Y.tr.ts(attack) --> 42 个实例
h.svm(attack) & Y.tr.ts(normal.) --> 44 个实例
h.svm(normal.) & Y.tr.ts(attack) --> 71 个实例
h.svm(normal.) & Y.tr.ts(normal.) --> 68 个实例
如果有人能告诉我我的代码有什么问题,我将不胜感激。
先感谢您