1

这是我第一次使用 Solver Foundation,我不明白如何指定目标函数。我试图使用 Solver 解决的问题是根据目标函数在 2D 表面上找到最佳点。作为输入数据,我在这个表面上有 3 个点,声波需要从源(最佳点)到达这三个点的时间差。这个时间差导致距离差。

这是我的代码:

var solver = SolverContext.GetContext();
var model = solver.CreateModel();

decisionX = new Decision( Domain.Real, "X" );
decisionY = new Decision( Domain.Real, "Y" );

model.AddDecision( decisionX );
model.AddDecision( decisionY );

model.AddGoal( "Goal", GoalKind.Minimize, GoalFunction() );

var solution = solver.Solve();
Console.WriteLine("X " + decisionX.GetDouble());
Console.WriteLine("Y " + decisionY.GetDouble());

GoalFunction() 定义如下:

double GoalFunction() {
    Location X = new Location( decisionX.ToDouble(), decisionY.ToDouble() );
    var rA = A.Location.Distance( X );
    var rB = B.Location.Distance( X );
    var rC = C.Location.Distance( X );

    rA = (Distance)( rA - dsA );
    rB = (Distance)( rB - dsA );
    rC = (Distance)( rC - dsA );

    return ( rA * rA + rB * rB + rC * rC ) / 3;
}

上面的代码抛出异常 ( decisionX.ToDouble()),因为此时尚未初始化决策。

有人可以帮我重写吗?


我已将我的 GoalFunction 重写为 all-Model.methods-calls。

var solver = SolverContext.GetContext();
var model = solver.CreateModel();

decisionX = new Decision( Domain.Real, "X" );
decisionY = new Decision( Domain.Real, "Y" );

model.AddDecision( decisionX );
model.AddDecision( decisionY );

var rA = Model.Difference(
    Model.Sqrt(
        Model.Sum(
            Model.Power( Model.Difference( decisionX, A.Location.X ), 2 ),
            Model.Power( Model.Difference( decisionY, A.Location.Y ), 2 )
        )
    ),
    dsA.Value
);
var rB = Model.Difference(
    Model.Sqrt(
        Model.Sum(
            Model.Power( Model.Difference( decisionX, B.Location.X ), 2 ),
            Model.Power( Model.Difference( decisionY, B.Location.Y ), 2 )
        )
    ),
    dsB.Value
);
var rC = Model.Difference(
    Model.Sqrt(
        Model.Sum(
            Model.Power( Model.Difference( decisionX, C.Location.X ), 2 ),
            Model.Power( Model.Difference( decisionY, C.Location.Y ), 2 )
        )
    ),
    dsC.Value
);
var miner = Model.Min( rA, rB, rC );
rA = Model.Difference( rA, miner );
rB = Model.Difference( rB, miner );
rC = Model.Difference( rC, miner );
var goal = Model.Sum(
    Model.Power( rA, 2 ),
    Model.Power( rB, 2 ),
    Model.Power( rC, 2 )
);
model.AddGoal( "Goal", GoalKind.Minimize, goal );

var solution = solver.Solve();
var q = solution.Quality;
double x = decisionX.GetDouble();
double y = decisionY.GetDouble();

solution.GetNext();
x = decisionX.GetDouble();
y = decisionY.GetDouble();

此代码有效,但返回 {0.0} 作为 LocalOptimal 解决方案,而最优是 {2,2}(我检查过,GoalFunction 为 {2,2} 返回 0,而为 {0,0} 返回更高的值。可能是 {0,当决策是 Domain.Real 时,0} 是起点。

Solution.GetNext() 没有任何改变。


decisionX = new Decision( Domain.RealRange( -10, 10 ), "X" );
decisionY = new Decision( Domain.RealRange( -10, 10 ), "Y" );

如果我限制域,返回的解决方案是 {1.9999999984154413,1.99999999990963979} 所以它是正确的。

但为什么解算器不启动完整的真实域?还是不知道

也许有一天有人会回答......我希望,但我将下面的答案标记为正确。

4

1 回答 1

1

我本人不是无国界医生的专家,但据我所知,你的model.AddGoal()说法是不正确的。根据文档,第三个参数应该是TermTerm有一个从doubleTerm的隐式强制转换运算符,因此在您的model.AddGoal()语句中发生的唯一事情GoalFunction就是调用一次(并抛出异常,因为一开始没有初始化决策)。

在 MSF 示例中,有一些关于如何创建目标的示例。

更新

基于这些示例,我创建了一个简单的目标(Rosenbrock 香蕉函数)并将这个目标合并到AddGoal调用中,如下所示:

    var goal = Model.Sum(Model.Power(1.0 - decisionX, 2.0),
                         Model.Product(100.0, Model.Power(decisionY - Model.Power(decisionX, 2.0), 2.0)));
    model.AddGoal( "Goal", GoalKind.Minimize, goal);

希望这可以引导您制定目标函数的方向。

于 2012-05-25T09:37:45.077 回答