我想提一下这个问题是一个典型的约束满足问题,可以使用SWI-Prolog的 CSP 模块来高效解决。这是完整的算法:
:- use_module(library(clpfd)).
color(red).
color(blue).
color(green).
vertex(a).
vertex(b).
vertex(c).
vertex(d).
vertex(e).
edge(a,b).
edge(a,c).
edge(b,c).
edge(b,d).
edge(c,d).
colorGraph(ColorList) :-
findall((X, Y), edge(X, Y), Edges),
findall(X, vertex(X), Vertexes),
findall(hasColor(X, _), member(X, Vertexes), ColorList),
createConstraint(Edges,ColorList),
colorNodes(ColorList).
createConstraint([],_).
createConstraint([(V1,V2)|RL],ColorList):-
member(hasColor(V1,C1),ColorList),
member(hasColor(V2,C2),ColorList),
dif(C1,C2),
createConstraint(RL,ColorList).
colorNodes([]).
colorNodes([hasColor(_,C)|Nodes]) :-
color(C),
colorNodes(Nodes).
color/1
指示可用的颜色,vertex/1
指示图中的顶点并edge/2
定义顶点之间的对。此外,colorGraph(?List)
确定顶点的颜色,其中List
是hasColor(Vertex, Color)
子句列表,Vertex
是使用 的彩色顶点Color
。
让我们详细介绍上面算法的每个部分,以了解发生了什么。
:- use_module(library(clpfd)).
它指示SWI-Prolog加载包含约束满足问题的谓词的模块。
colorGraph(ColorList) :-
findall((X, Y), edge(X, Y), Edges),
findall(X, vertex(X), Vertexes),
findall(hasColor(X, _), member(X, Vertexes), ColorList),
createConstraint(Edges,ColorList),
colorNodes(ColorList).
谓词colorGraph/1
是算法的入口点。它将边/顶点的子句转换为列表,约束ColorList
定义顶点列表,最后创建颜色约束并分配颜色(它们是两个独立的操作)。
createConstraint([],_).
createConstraint([(V1,V2)|RL],ColorList):-
member(hasColor(V1,C1),ColorList),
member(hasColor(V2,C2),ColorList),
dif(C1,C2),
createConstraint(RL,ColorList).
预测createConstraint/2
只是说明两个链接的顶点必须具有不同的颜色。这值得一提dif/2
的是一个CSP谓词。
colorNodes([]).
colorNodes([hasColor(_,C)|Nodes]) :-
color(C),
colorNodes(Nodes).
谓词colorNodes/1
为顶点分配正确的颜色。Prolog 将注意根据上面定义的约束分配正确的颜色。
最后可以通过调用谓词找到结果colorGraph/1
,如:
?- colorGraph(L).
L = [hasColor(a, red), hasColor(b, blue), hasColor(c, green), hasColor(d, red), hasColor(e, red)] ;
L = [hasColor(a, red), hasColor(b, blue), hasColor(c, green), hasColor(d, red), hasColor(e, blue)] ;
L = [hasColor(a, red), hasColor(b, blue), hasColor(c, green), hasColor(d, red), hasColor(e, green)] ;
L = [hasColor(a, red), hasColor(b, green), hasColor(c, blue), hasColor(d, red), hasColor(e, red)] ;
L = [hasColor(a, red), hasColor(b, green), hasColor(c, blue), hasColor(d, red), hasColor(e, blue)] ;
L = [hasColor(a, red), hasColor(b, green), hasColor(c, blue), hasColor(d, red), hasColor(e, green)] ;
L = [hasColor(a, blue), hasColor(b, red), hasColor(c, green), hasColor(d, blue), hasColor(e, red)] ;
L = [hasColor(a, blue), hasColor(b, red), hasColor(c, green), hasColor(d, blue), hasColor(e, blue)] ;
L = [hasColor(a, blue), hasColor(b, red), hasColor(c, green), hasColor(d, blue), hasColor(e, green)] ;
L = [hasColor(a, blue), hasColor(b, green), hasColor(c, red), hasColor(d, blue), hasColor(e, red)] ;
L = [hasColor(a, blue), hasColor(b, green), hasColor(c, red), hasColor(d, blue), hasColor(e, blue)] ;
L = [hasColor(a, blue), hasColor(b, green), hasColor(c, red), hasColor(d, blue), hasColor(e, green)] ;
L = [hasColor(a, green), hasColor(b, red), hasColor(c, blue), hasColor(d, green), hasColor(e, red)] ;
L = [hasColor(a, green), hasColor(b, red), hasColor(c, blue), hasColor(d, green), hasColor(e, blue)] ;
L = [hasColor(a, green), hasColor(b, red), hasColor(c, blue), hasColor(d, green), hasColor(e, green)] ;
L = [hasColor(a, green), hasColor(b, blue), hasColor(c, red), hasColor(d, green), hasColor(e, red)] ;
L = [hasColor(a, green), hasColor(b, blue), hasColor(c, red), hasColor(d, green), hasColor(e, blue)] ;
L = [hasColor(a, green), hasColor(b, blue), hasColor(c, red), hasColor(d, green), hasColor(e, green)] ;