1

几天来,我试图做一个程序来模拟一个不确定的有限自动机(NFA),更具体地说,一个字符串识别器。在几次失败后,感谢用户Konrad Rudolph,我可以根据这个伪代码实现一个解决方案:

好吧,在 NFA 中,您有一组当前状态,并且在每个步骤中,您都会遍历所有当前状态,并且为每个状态选择所有有效转换。这些组合集形成了您的新状态集。

最后,检查当前状态和接受状态的交集是否为非空。

在伪代码中,如下所示:

current = { initial }
    for each char in input:
        next = { }
        for each state in current:
            for each transition in transitions[state][char]:
                next.append(target_of(transition))
        current = next
if len(intersection(current, accepting)) > 0:
    print "String accepted"
else:
    print "String rejected"

这可以逐行翻译成 C++ 代码。他建议让这个简单,使用std::set<int> for the current and next sets

这是我在 C++ 中的实现:

#include <iostream>
#include <vector>
#include <map>
#include <set>
#include <utility>
#include <vector>

using namespace std;

int main (){

    int testCases, i, j,k, cont=1,finalStates,numberInputs,stateOrigin, stateDestination;
    int numberStates, numberTransitions, initialState;
    int  numberFinals;
    char transitionCharacter ;

    set<int> current;
    set<int> next;
    set<int>::iterator it;
    set <int> final;
    set<int> the_intersection;  // Destination of intersect
    map<pair<int, int>, char>::iterator p;
    string inputString;

    typedef std::pair<int, int> trigger;
    std::map<trigger, char> transitions;
    map<trigger, char>::iterator r;

    cin>> testCases;
    for (i=0;i< testCases;i++){
        
        final.clear();
        next.clear();
        current.clear();
        the_intersection.clear();
        transitions.clear();
        cin>>numberStates>>numberTransitions>>initialState>>numberFinals;

        for (j=0;j<numberFinals;j++){
            cin>>finalStates;
            final.insert(finalStates);
        }

        for (j=0; j<numberTransitions;j++){
            cin>> stateOrigin>>stateDestination>>transitionCharacter;
            transitions.insert(make_pair(make_pair(stateOrigin, stateDestination), transitionCharacter));
        }

        cin>>numberInputs;
        current.insert (initialState);
        cout<<"Test Case #"<<cont++<<":"<<endl;
        
        for (j=0; j<numberInputs;j++){
            current.clear();
            current.insert (initialState);
            the_intersection.clear();
            cin>> inputString;
            cout<<inputString<<" ";
            
            /// ///////////////Konrad Rudolph's solution /////////////////
            for (k=0; k<inputString.size();k++){
                next.clear();
                for (it = current.begin(); it!=current.end(); it++){
                    for (r =transitions.begin(); r!=transitions.end(); r++){
                        if ( ((*r).first.first == *it) && ( (*r).second == inputString[k] ) ){
                            next.insert((*r).first.second);
                        }
                    }
                    current = next;
                }
            }
            std::set_intersection(current.begin(), current.end(), final.begin(), final.end(), std::inserter(the_intersection, the_intersection.end()));

            if (the_intersection.empty()){
                cout<<"Rejected"<<endl;
            }else {
                cout<<"Acepted"<<endl;
            }
            
            /// ///////////////////////////////////////////////////////
        }
        cout<<endl;
    }
return 0;
}

我有这个输入:

1
6 8 0 2
2
5
0 0 a
0 1 a
1 1 b
1 2 c
1 3 c
3 4 d
4 4 d
4 5 d
5
aaabcccc
aabbbbcdc
abbcdddcc
abc
acdddddd

预期的输出是:

Test Case #1:
aaabcccc Rejected
aabbbbcdc Rejected
abbcdddcc Rejected
abc Acepted
acdddddd Acepted

但是,我的代码作为输出生成:

Test Case #1:
aaabcccc Rejected
aabbbbcdc Rejected
abbcdddcc Rejected
abc Acepted
acdddddd

而对于测试用例的最后一个字符串,程序什么也不做,只是不停止运行。我的问题是为什么我的程序会因这个特定的输入而崩溃。我在JFlap中设计了相同的自动机 NFA并识别了最后一个输入

呸呸呸呸

.

在此处输入图像描述

(0, a) = 1
(1, c) = 2
(2, d) = 3
(3, d) = 4
(4, d) = 4
(4, d) = 4
(4, d) = 4
(4, d) = 5

我在执行代码时犯了什么错误?

4

1 回答 1

4

你想做的;

for each char in input:
    next = { }
    for each state in current:
        for each transition in transitions[state][char]:
            next.append(target_of(transition))
    current = next

但你正在做的是;

for each char in input:
    next = { }
    for each state in current:
        for each transition in transitions[state][char]:
            next.append(target_of(transition))
        current = next

微妙,但在循环时重新分配电流可能会导致您的挂起,并且绝对不会给出预期的结果。

于 2012-05-18T05:29:40.827 回答