更新:我已经意识到由于涉及大量数据(15k+ 项),无法以当前形式回答以下问题。我刚刚发现,我要帮助的小组只是让它运行一个月,然后终止它以使用结果(这就是他们希望在更快的时间内获得更多结果的原因)。这对我来说似乎很疯狂,因为他们只使用前几组数据(大列表中的最后一项从未被使用过)。所以我正在修改这个问题以获得预期输出的样本(解决方案的近似值不是完整的解决方案)。在更短的时间内完成此任务的最佳方法是什么?他们似乎想要一个多样化的结果样本,是遗传算法起作用还是某种采样技术?问题的其余部分保持不变(相同的输入/输出),但我
我的问题不完全是背包问题,但非常接近。基本上,我试图找到等于特定值的 X 项的每个组合。我从我的一个朋友那里听说了这个问题,他在一个小型学校研究实验室工作,这个过程在那里运行,大约需要 25 天才能完成。看起来真的很可怕,所以我主动提供帮助(对我有好处,我可以学习并帮助一些非常好的人),所以我想出了如何通过多线程来扩展它(我将包括下面的代码),这个将他们的处理时间缩短了几天,但我仍然不满意,所以我只是将我的代码移植到 GPU 上工作,但我并不满意(尽管他们很高兴,因为它更快,而且我捐赠了我的旧显卡)因为我只是利用硬件而不是任何算法。马上,
那么在这样的背景下,我能做些什么来加快算法速度吗?我的直觉告诉我不,因为因为他们需要每一种组合,所以从逻辑上讲,计算机必须处理每一种组合(数十亿),但我以前在这里看到了令人惊奇的事情,即使是很小的加速也可以在处理的天数内产生影响.
我喜欢超过 10 个版本的代码,但这里有一个使用多线程的 Java 版本(但它和 gpu 之间的逻辑几乎相同)。
基本逻辑:
for (int c = 100; c >= 0; c--) {
if (c * x_k == current.sum) { //if result is correct then save
solutions.add(new Context(0, 0, newcoeff));
continue;
} else if (current.k > 0) { //if result is not equal but not end of list then send to queue
contexts.add(new Context(current.k - 1, current.sum - c * x_k, newcoeff));
}
}
完整代码:
import java.util.Arrays;
import java.util.ArrayDeque;
import java.util.Queue;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.LinkedBlockingDeque;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
public class MixedParallel
{
// pre-requisite: sorted values !!
private static final int[] data = new int[] { -5,10,20,30,35 };
// Context to store intermediate computation or a solution
static class Context {
int k;
int sum;
int[] coeff;
Context(int k, int sum, int[] coeff) {
this.k = k;
this.sum = sum;
this.coeff = coeff;
}
}
// Thread pool for parallel execution
private static ExecutorService executor;
// Queue to collect solutions
private static Queue<Context> solutions;
static {
final int numberOfThreads = 2;
executor =
new ThreadPoolExecutor(numberOfThreads, numberOfThreads, 1000, TimeUnit.SECONDS,
new LinkedBlockingDeque<Runnable>());
// concurrent because of multi-threaded insertions
solutions = new ConcurrentLinkedQueue<Context>();
}
public static void main(String[] args)
{
System.out.println("starting..");
int target_sum = 100;
// result vector, init to 0
int[] coeff = new int[data.length];
Arrays.fill(coeff, 0);
mixedPartialSum(data.length - 1, target_sum, coeff);
executor.shutdown();
// System.out.println("Over. Dumping results");
while(!solutions.isEmpty()) {
Context s = solutions.poll();
printResult(s.coeff);
}
}
private static void printResult(int[] coeff) {
StringBuffer sb = new StringBuffer();
for (int i = coeff.length - 1; i >= 0; i--) {
if (coeff[i] > 0) {
sb.append(data[i]).append(" * ").append(coeff[i]).append(" + ");
}
}
System.out.println(sb);
}
private static void mixedPartialSum(int k, int sum, int[] coeff) {
int x_k = data[k];
for (int c = 0; c <= 100; c++) {
coeff[k] = c;
int[] newcoeff = Arrays.copyOf(coeff, coeff.length);
if (c * x_k == sum) {
//printResult(newcoeff);
solutions.add(new Context(0, 0, newcoeff));
continue;
} else if (k > 0) {
if (data.length - k < 2) {
mixedPartialSum(k - 1, sum - c * x_k, newcoeff);
// for loop on "c" goes on with previous coeff content
} else {
// no longer recursive. delegate to thread pool
executor.submit(new ComputePartialSum(new Context(k - 1, sum - c * x_k, newcoeff)));
}
}
}
}
static class ComputePartialSum implements Callable<Void> {
// queue with contexts to process
private Queue<Context> contexts;
ComputePartialSum(Context request) {
contexts = new ArrayDeque<Context>();
contexts.add(request);
}
public Void call() {
while(!contexts.isEmpty()) {
Context current = contexts.poll();
int x_k = data[current.k];
for (int c = 0; c <= 100; c++) {
current.coeff[current.k] = c;
int[] newcoeff = Arrays.copyOf(current.coeff, current.coeff.length);
if (c * x_k == current.sum) {
//printResult(newcoeff);
solutions.add(new Context(0, 0, newcoeff));
continue;
} else if (current.k > 0) {
contexts.add(new Context(current.k - 1, current.sum - c * x_k, newcoeff));
}
}
}
return null;
}
}
}
以下是数据/方法的一些特征:
- 所有数字都是短裤(似乎没有数字超过 +/- 200 的值)
- 有重复项(但没有零值)
- for 循环将系数限制为 100(这是一个硬数字,并告诉它不会改变)。这限制了结果
- 项目数量有限制,但它是可变的,由我的朋友实验室决定。我一直在使用 2 对组合进行测试,但我的朋友告诉我他们使用 30-35 对(这不是涉及整个数据集的组合)。这也限制了结果失控
- 我的朋友提到他们所做的后处理涉及删除所有包含少于 30 个系数或超过 35 个系数的结果。在我当前的代码中,如果
newcoeff
变量超过一个数字(在本例中为 35),我会中断,但也许有一种方法甚至不处理结果低于 30。这可能是减少处理时间的一个大领域。现在看来,他们生成了大量无用的数据来获取他们想要的数据。 - 他们的数据集是 10k-15k 个项目(负/正)
- 我只收到 3 个项目,两个列表(一个数据和一个用于识别数据的 ID 号)和一个目标总和。然后我保存一个包含该列表中所有数据组合的文件。
- 我愿意在这里提供帮助,因为这部分花费了最长的时间,在数据传到我这里之前,他们会对其进行处理(尽管他们自己不会生成数据),一旦我将文件发送给他们,他们就会对其应用自己的逻辑并进行处理它。因此,我唯一关注的是获取 3 个输入并生成输出文件。
- 使用线程和 GPU 已将问题减少到在一周内完成,但我在这里寻找的是改进算法的想法,以便我可以利用软件而不仅仅是硬件 gpu 来提高速度。从代码中可以看出,它现在只是蛮力。所以理想情况下,我想要可以线程化的建议。
更新2:我认为问题本身很简单/很常见,但问题是大规模运行,所以这是我在进行测试时得到的真实数据(它没有它得到的那么大,但它大约有 3,000 个项目,所以如果你想测试您不必自己生成它):
private static final int target_sum = 5 * 1000;
private static final List<Integer> data = Arrays.asList( -193, -138, -92, -80, -77, -70, -63, -61, -60, -56, -56, -55, -54, -54, -51, -50, -50, -50, -49, -49, -48, -46, -45, -44, -43, -43, -42, -42, -42, -42, -41, -41, -40, -40, -39, -38, -38, -38, -37, -37, -37, -37, -37, -36, -36, -36, -35, -34, -34, -34, -34, -34, -34, -34, -33, -33, -33, -32, -32, -32, -32, -32, -32, -32, -32, -31, -31, -31, -31, -31, -31, -31, -30, -30, -30, -30, -30, -29, -29, -29, -29, -29, -29, -29, -29, -29, -28, -28, -28, -28, -27, -27, -27, -27, -26, -26, -26, -26, -26, -26, -25, -25, -25, -25, -25, -25, -25, -25, -24, -24, -24, -24, -24, -24, -24, -24, -24, -24, -23, -23, -23, -23, -23, -23, -23, -23, -22, -22, -22, -22, -22, -22, -22, -22, -22, -21, -21, -21, -21, -21, -21, -21, -20, -20, -20, -20, -20, -20, -20, -19, -19, -19, -19, -19, -19, -19, -19, -19, -19, -19, -19, -19, -19, -18, -18, -18, -18, -18, -18, -18, -18, -18, -18, -18, -18, -18, -18, -18, -18, -18, -17, -17, -17, -17, -17, -17, -17, -17, -17, -17, -17, -17, -17, -17, -17, -17, -17, -16, -16, -16, -16, -16, -16, -16, -16, -16, -16, -16, -16, -16, -16, -16, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -14, -14, -14, -14, -14, -14, -14, -14, -14, -14, -14, -14, -14, -14, -14, -14, -14, -14, -14, -14, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 30, 30, 30, 30, 30, 30, 30, 31, 31, 31, 31, 31, 32, 32, 32, 32, 33, 33, 33, 33, 34, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 36, 36, 36, 36, 37, 37, 38, 39, 39, 39, 40, 41, 41, 41, 41, 41, 42, 42, 43, 43, 44, 45, 45, 46, 47, 47, 48, 48, 49, 49, 50, 54, 54, 54, 55, 55, 56, 56, 57, 57, 57, 57, 57, 58, 58, 58, 59, 60, 66, 67, 68, 70, 72, 73, 73, 84, 84, 86, 92, 98, 99, 105, 114, 118, 120, 121, 125, 156);
我正在学习编程和算法,所以如果我遗漏了任何东西或没有意义的东西,请告诉我。请注意,我知道由于数据量大,这似乎是不可能的,但事实并非如此(我已经看到它运行并且它的变体已经运行了多年)。请不要让规模分散真正的问题,如果您使用 10 个变量并且它比我的 10 个变量蛮力快 10%,那么我相信它会在更大的数据上更快。我不是想把灯关掉,我在寻找可以提供更快结果的小改进(或更大的设计改进)。另外,如果有任何假设需要放松,请告诉我。