我在 NVIDIA 论坛上发布了这个,我想我会得到更多的帮助。
我在尝试扩展我的代码以执行多种情况时遇到了麻烦。我一直在考虑最常见的情况进行开发,现在是测试的时候了,我需要确保它适用于不同的情况。目前我的内核是在一个循环中执行的(我们没有做一个内核调用来完成整个事情是有原因的。)以计算矩阵行中的值。最常见的情况是 512 列乘 512 行。我需要考虑大小为 512 x 512、1024 x 512、512 x 1024 和其他组合的矩阵,但最大的矩阵将是 1024 x 1024 矩阵。我一直在使用一个相当简单的内核调用:
launchKernel<<<1,512>>>(................)
该内核适用于常见的 512x512 和 512 x 1024(分别为列、行)情况,但不适用于 1024 x 512 情况。这种情况需要 1024 个线程来执行。在我的天真中,我一直在尝试不同版本的简单内核调用来启动 1024 个线程。
launchKernel<<<2,512>>>(................) // 2 blocks with 512 threads each ???
launchKernel<<<1,1024>>>(................) // 1 block with 1024 threads ???
我相信我的问题与我对线程和块缺乏了解有关
这是 deviceQuery 的输出,如您所见,我最多可以有 1024 个线程
C:\ProgramData\NVIDIA Corporation\NVIDIA GPU Computing SDK 4.1\C\bin\win64\Release\deviceQuery.exe Starting...
CUDA Device Query (Runtime API) version (CUDART static linking)
Found 2 CUDA Capable device(s)
Device 0: "Tesla C2050"
CUDA Driver Version / Runtime Version 4.2 / 4.1
CUDA Capability Major/Minor version number: 2.0
Total amount of global memory: 2688 MBytes (2818572288 bytes)
(14) Multiprocessors x (32) CUDA Cores/MP: 448 CUDA Cores
GPU Clock Speed: 1.15 GHz
Memory Clock rate: 1500.00 Mhz
Memory Bus Width: 384-bit
L2 Cache Size: 786432 bytes
Max Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536,65535), 3D=(2048,2048,2048)
Max Layered Texture Size (dim) x layers 1D=(16384) x 2048, 2D=(16384,16384) x 2048
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 32768
Warp size: 32
Maximum number of threads per block: 1024
Maximum sizes of each dimension of a block: 1024 x 1024 x 64
Maximum sizes of each dimension of a grid: 65535 x 65535 x 65535
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and execution: Yes with 2 copy engine(s)
Run time limit on kernels: Yes
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Concurrent kernel execution: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support enabled: Yes
Device is using TCC driver mode: No
Device supports Unified Addressing (UVA): No
Device PCI Bus ID / PCI location ID: 40 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
Device 1: "Quadro 600"
CUDA Driver Version / Runtime Version 4.2 / 4.1
CUDA Capability Major/Minor version number: 2.1
Total amount of global memory: 1024 MBytes (1073741824 bytes)
( 2) Multiprocessors x (48) CUDA Cores/MP: 96 CUDA Cores
GPU Clock Speed: 1.28 GHz
Memory Clock rate: 800.00 Mhz
Memory Bus Width: 128-bit
L2 Cache Size: 131072 bytes
Max Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536,65535), 3D=(2048,2048,2048)
Max Layered Texture Size (dim) x layers 1D=(16384) x 2048, 2D=(16384,16384) x 2048
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 32768
Warp size: 32
Maximum number of threads per block: 1024
Maximum sizes of each dimension of a block: 1024 x 1024 x 64
Maximum sizes of each dimension of a grid: 65535 x 65535 x 65535
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and execution: Yes with 1 copy engine(s)
Run time limit on kernels: Yes
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Concurrent kernel execution: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support enabled: No
Device is using TCC driver mode: No
Device supports Unified Addressing (UVA): No
Device PCI Bus ID / PCI location ID: 15 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 4.2, CUDA Runtime Version = 4.1, NumDevs = 2, Device = Tesla C2050, Device = Quadro 600
我只使用 Tesla C2050 设备 这是我的内核的精简版本,所以你知道它在做什么。
#define twoPi 6.283185307179586
#define speed_of_light 3.0E8
#define MaxSize 999
__global__ void calcRx4CPP4
(
const float *array1,
const double *array2,
const float scalar1,
const float scalar2,
const float scalar3,
const float scalar4,
const float scalar5,
const float scalar6,
const int scalar7,
const int scalar8,
float *outputArray1,
float *outputArray2)
{
float scalar9;
int idx;
double scalar10;
double scalar11;
float sumReal, sumImag;
float real, imag;
float coeff1, coeff2, coeff3, coeff4;
sumReal = 0.0;
sumImag = 0.0;
// kk loop 1 .. 512 (scalar7)
idx = (blockIdx.x * blockDim.x) + threadIdx.x;
/* Declare the shared memory parameters */
__shared__ float SharedArray1[MaxSize];
__shared__ double SharedArray2[MaxSize];
/* populate the arrays on shared memory */
SharedArray1[idx] = array1[idx]; // first 512 elements
SharedArray2[idx] = array2[idx];
if (idx+blockDim.x < MaxSize){
SharedArray1[idx+blockDim.x] = array1[idx+blockDim.x];
SharedArray2[idx+blockDim.x] = array2[idx+blockDim.x];
}
__syncthreads();
// input scalars used here.
scalar10 = ...;
scalar11 = ...;
for (int kk = 0; kk < scalar8; kk++)
{
/* some calculations */
// SharedArray1, SharedArray2 and scalar9 used here
sumReal = ...;
sumImag = ...;
}
/* calculation of the exponential of a complex number */
real = ...;
imag = ...;
coeff1 = (sumReal * real);
coeff2 = (sumReal * imag);
coeff3 = (sumImag * real);
coeff4 = (sumImag * imag);
outputArray1[idx] = (coeff1 - coeff4);
outputArray2[idx] = (coeff2 + coeff3);
}
因为我每个块的最大线程数是 1024,我以为我可以继续使用简单的内核启动,我错了吗?
如何使用 1024 个线程成功启动每个内核?