1

所以假设我们有看起来像这样的数据:

drop table if exists views; 
create table views(id int primary key,start time,end time); 
insert into views values 
(1, '15:01', '15:04'), 
(2, '15:02', '15:09'), 
(3, '15:12', '15:15'), 
(4, '16:11', '16:23'), 
(5, '16:19', '16:25'), 
(6, '17:52', '17:59'), 
(7, '18:18', '18:22'), 
(8, '16:20', '16:22'), 
(9, '18:17', '18:23'); 

像这样轻松可视化

1     |-----| 
2        |-----| 
3                 |--| 
4                       |-----| 
5                          |-----| 
6                                  |---| 
7                                        |---|  
8                           |---| 
9                                       |-----| 

现在我想绘制该数据,使其看起来像这样

+---------------------------+
|              x            |
|    x        x xxx     xxx |
|   x xx  xx x     xx  x    |
+---------------------------+

本质上将它们分解为 X 长度的段,并总结每个 X 长度的段被触摸的次数。关于如何创建此视图的任何想法?

(如果您必须知道这一点,我可以为视频分析创建参与数据)

我不希望输出是 ASCII 我希望它最终作为 SQL 中的查询结果。就像是:

Time Start, Time End,  Num_Views
00:00, 00:05, 10
00:06, 00:10, 3
00:11, 00:15, 2
00:16, 00:20, 8
4

1 回答 1

3

使用辅助数字表,您可以执行以下操作:

select
  r.Time_Start,
  r.Time_End,
  sum(v.id is not null) as Num_Views
from (
  select
    cast(from_unixtime((m.minstart + n.n + 0) * 300) as time) as Time_Start,
    cast(from_unixtime((m.minstart + n.n + 1) * 300) as time) as Time_End
  from (
    select
      unix_timestamp(date_format(minstart, '1970-01-01 %T')) div 300 as minstart,
      unix_timestamp(date_format(maxend  , '1970-01-01 %T')) div 300 as maxend
    from (
      select
        min(start) as minstart,
        max(end  ) as maxend
      from views
    ) s
  ) m
    cross join numbers n
  where n.n between 0 and m.maxend - minstart
) r
  left join views v on v.start < r.Time_End and v.end > r.Time_Start
group by
  r.Time_Start,
  r.Time_End
;

对于您的特定示例,此脚本产生以下输出:

Time_Start  Time_End  Num_Views
----------  --------  ---------
15:00:00    15:05:00  2
15:05:00    15:10:00  1
15:10:00    15:15:00  1
15:15:00    15:20:00  0
15:20:00    15:25:00  0
15:25:00    15:30:00  0
15:30:00    15:35:00  0
15:35:00    15:40:00  0
15:40:00    15:45:00  0
15:45:00    15:50:00  0
15:50:00    15:55:00  0
15:55:00    16:00:00  0
16:00:00    16:05:00  0
16:05:00    16:10:00  0
16:10:00    16:15:00  1
16:15:00    16:20:00  2
16:20:00    16:25:00  3
16:25:00    16:30:00  0
16:30:00    16:35:00  0
16:35:00    16:40:00  0
16:40:00    16:45:00  0
16:45:00    16:50:00  0
16:50:00    16:55:00  0
16:55:00    17:00:00  0
17:00:00    17:05:00  0
17:05:00    17:10:00  0
17:10:00    17:15:00  0
17:15:00    17:20:00  0
17:20:00    17:25:00  0
17:25:00    17:30:00  0
17:30:00    17:35:00  0
17:35:00    17:40:00  0
17:40:00    17:45:00  0
17:45:00    17:50:00  0
17:50:00    17:55:00  1
17:55:00    18:00:00  1
18:00:00    18:05:00  0
18:05:00    18:10:00  0
18:10:00    18:15:00  0
18:15:00    18:20:00  2
18:20:00    18:25:00  2

数字表可以是临时表,但我建议您创建和初始化一个永久表,因为它可用于多种用途。这是初始化数字表的一种方法:

create table numbers (n int);
insert into numbers (n) select 0;
insert into numbers (n) select cnt + n from numbers, (select count(*) as cnt from numbers) s;
insert into numbers (n) select cnt + n from numbers, (select count(*) as cnt from numbers) s;
insert into numbers (n) select cnt + n from numbers, (select count(*) as cnt from numbers) s;
insert into numbers (n) select cnt + n from numbers, (select count(*) as cnt from numbers) s;
insert into numbers (n) select cnt + n from numbers, (select count(*) as cnt from numbers) s;
insert into numbers (n) select cnt + n from numbers, (select count(*) as cnt from numbers) s;
insert into numbers (n) select cnt + n from numbers, (select count(*) as cnt from numbers) s;
insert into numbers (n) select cnt + n from numbers, (select count(*) as cnt from numbers) s;
/* repeat as necessary; every repeated line doubles the number of rows */

此脚本的“实时”版本可以在 SQL Fiddle上找到。

更新(尝试描述所使用的方法)

上述解决方案实现了以下步骤:

  1. 找出表中最早的start时间和最晚的end时间views

  2. 将这两个值都转换为unix 时间戳

  3. 将两个时间戳除以 300,这基本上为我们提供了相应 5 分钟范围的索引(自纪元以来)。

  4. 在数字表的帮助下,生成一系列 5 分钟范围,涵盖 和 之间的整体start范围end

  5. 将范围列表与表中的事件时间匹配views(使用外连接,因为我们希望(如果我们愿意)考虑所有范围)。

  6. 按范围界限对结果进行分组并计算组中的事件数。(我刚刚注意到sum(v.id is not null)上述查询中的 可以替换为更简洁,在这种情况下更自然count(v.id)。)

于 2012-05-08T07:27:59.750 回答