这篇文章帮助我解决了一个 data.frame 的一般问题。
我对组重复测量,G1
e G2
。
> str(df)
'data.frame': 6 obs. of 15 variables:
$ G1 : num 0 0 2 2 8 8
$ G2 : logi FALSE TRUE FALSE TRUE FALSE TRUE
$ e.10.100 : num 26.41 -11.71 27.78 3.17 26.07 ...
$ e.10.250 : num 27.27 -12.79 29.16 3.19 26.91 ...
$ e.20.100 : num 29.96 -12.19 26.19 3.44 27.32 ...
$ e.20.100d: num 26.42 -13.16 28.26 4.18 25.43 ...
$ e.20.200 : num 24.244 -18.364 29.047 0.553 25.851 ...
$ e.20.50 : num 26.55 -13.28 29.65 4.34 27.26 ...
$ e.20.500 : num 27.94 -13.92 27.59 2.47 25.54 ...
$ e.20.500d: num 24.4 -15.63 26.78 4.86 25.39 ...
$ e.30.100d: num 26.543 -15.698 31.849 0.572 29.484 ...
$ e.30.250 : num 26.776 -16.532 28.961 0.813 25.407 ...
$ e.50.100 : num 25.995 -14.249 28.697 0.803 27.852 ...
$ e.50.100d: num 26.1 -12.7 27.1 2.5 27.4 ...
$ e.50.500 : num 28.78 -9.39 25.77 2.73 23.73 ..
我需要知道哪个度量(列)具有最佳(最大)结果。而且我需要不考虑分组列。
我最终得到了这个功能
apply(df[colIni:colFim], 1, function(x) colnames(df)[which.max(x)+(colIni-1)]
#colIni: first column to consider; colFim: last column to consider
有了列名后,另一个小函数来获取最大值
apply(dfm,1,function(x) x[x[1]])
以及解决类似问题的函数,即返回列和最大值
mxCol=function(df, colIni, colFim){ #201609
if(missing(colIni)) colIni=1
if(missing(colFim)) colFim=ncol(df)
if(colIni>=colFim) { print('colIni>=ColFim'); return(NULL)}
dfm=cbind(mxCol=apply(df[colIni:colFim], 1, function(x) colnames(df)[which.max(x)+(colIni-1)])
,df)
dfm=cbind(mxVal=as.numeric(apply(dfm,1,function(x) x[x[1]]))
,dfm)
return(dfm)
}
在这种情况下,
> mxCol(df,3)[1:11]
mxVal mxCol G1 G2 e.10.100 e.10.250 e.20.100 e.20.100d e.20.200 e.20.50 e.20.500
1 29.958 e.20.100 0 FALSE 26.408 27.268 29.958 26.418 24.244 26.553 27.942
2 -9.395 e.50.500 0 TRUE -11.708 -12.789 -12.189 -13.162 -18.364 -13.284 -13.923
3 31.849 e.30.100d 2 FALSE 27.782 29.158 26.190 28.257 29.047 29.650 27.586
4 4.862 e.20.500d 2 TRUE 3.175 3.190 3.439 4.182 0.553 4.337 2.467
5 29.484 e.30.100d 8 FALSE 26.069 26.909 27.319 25.430 25.851 27.262 25.535
6 -9.962 e.30.250 8 TRUE -11.362 -12.432 -15.960 -11.760 -12.832 -12.771 -12.810