在下面的例子中,我希望能得到一些关于绘制所需结果的最佳方法的反馈。
clear all
Table1 = {0.990,0.987,0.972,0.832,0.776,20;0.988,0.986,0.961,0.946,0.906,...
30;0.963,0.956,0.850,0.897,0.908,70;0.970,0.968,0.922,0.835,0.674,...
90;0.957,0.950,0.908,0.925,0.955,100;0.966,0.963,0.948784273781552,0.892,...
0.812,120;0.977,0.973,0.932,0.779,0.648,450;0.985,0.985,0.915,...
0.832,0.792,480;0.979,0.969,0.939,0.814,0.642,550;0.983,0.980,0.916,...
0.719,0.520,570;};
locations = {'loc1','loc2','loc3','loc4','loc5'};
CombLocation = locations(nchoosek(1:length(locations),2));
Table2 = [CombLocation,Table1];
Headings = {'location1','location2','depth1','depth2','depth3','depth4',...
'depth5','residence time'};
Table3 = [Headings;Table2];
depths = [5.3,6.8,16.3,24,16.78];
在这里,我们有“表3”,它展示了不同位置(“loc1”,“loc2”)之间的相关值(水温),根据“停留时间”(其中停留时间是位置之间的停留时间差异)进行排序)。我想做的是表明随着深度的增加,相干性水平受到停留时间的极大影响。
这可以单独为每个深度完成,例如
figure;
plot(cell2mat(Table3(2:11,8)),cell2mat(Table3(2:11,7)));
因此表明随着停留时间的增加,相关性降低。然后可以对较浅的深度重复此操作,即 depths(1) 例如
figure;
plot(cell2mat(Table3(2:11,8)),cell2mat(Table3(2:11,3)));
但是,我想制作一张图,表明随着水深的增加,具有较高相干性的位置是停留时间差异较小的位置。
任何意见,将不胜感激。