我一直在使用openCV进行一些块匹配,我注意到它的平方差之和与这样的直接for循环相比非常快:
int SSD = 0;
for(int i =0; i < arraySize; i++)
SSD += (array1[i] - array2[i] )*(array1[i] - array2[i]);
如果我查看源代码以了解繁重的工作发生在哪里,OpenCV 的人们让他们的 for 循环在循环的每次迭代中一次执行 4 次平方差计算。进行块匹配的函数如下所示。
int64
icvCmpBlocksL2_8u_C1( const uchar * vec1, const uchar * vec2, int len )
{
int i, s = 0;
int64 sum = 0;
for( i = 0; i <= len - 4; i += 4 )
{
int v = vec1[i] - vec2[i];
int e = v * v;
v = vec1[i + 1] - vec2[i + 1];
e += v * v;
v = vec1[i + 2] - vec2[i + 2];
e += v * v;
v = vec1[i + 3] - vec2[i + 3];
e += v * v;
sum += e;
}
for( ; i < len; i++ )
{
int v = vec1[i] - vec2[i];
s += v * v;
}
return sum + s;
}
此计算适用于无符号 8 位整数。他们在此函数中对 32 位浮点数执行类似的计算:
double
icvCmpBlocksL2_32f_C1( const float *vec1, const float *vec2, int len )
{
double sum = 0;
int i;
for( i = 0; i <= len - 4; i += 4 )
{
double v0 = vec1[i] - vec2[i];
double v1 = vec1[i + 1] - vec2[i + 1];
double v2 = vec1[i + 2] - vec2[i + 2];
double v3 = vec1[i + 3] - vec2[i + 3];
sum += v0 * v0 + v1 * v1 + v2 * v2 + v3 * v3;
}
for( ; i < len; i++ )
{
double v = vec1[i] - vec2[i];
sum += v * v;
}
return sum;
}
我想知道是否有人知道像这样将循环分成 4 个块是否可以加快代码速度?我应该补充一点,这段代码中没有发生多线程。