我对使用 6 次多项式插值非线性数据有非常具体的要求。我见过 numpy/scipy 例程(scipy.interpolate.InterpolatedUnivariateSpline),它只允许插值达到 5 级。
即使没有直接的函数可以做到这一点,有没有办法在 Python 中复制 Excel 的 LINEST 线性回归算法?LINEST 允许 6 度曲线拟合,但我不想将 Excel 用于任何事情,因为此计算是更大 Python 脚本的一部分。
任何帮助,将不胜感激!
我对使用 6 次多项式插值非线性数据有非常具体的要求。我见过 numpy/scipy 例程(scipy.interpolate.InterpolatedUnivariateSpline),它只允许插值达到 5 级。
即使没有直接的函数可以做到这一点,有没有办法在 Python 中复制 Excel 的 LINEST 线性回归算法?LINEST 允许 6 度曲线拟合,但我不想将 Excel 用于任何事情,因为此计算是更大 Python 脚本的一部分。
任何帮助,将不胜感激!
您可以使用scipy.optimize.curve_fit
将您想要的任何功能(在合理范围内)适合您的数据。这个函数的签名是
curve_fit(f, xdata, ydata, p0=None, sigma=None, **kw)
它使用非线性最小二乘拟合来拟合f
数据的函数ydata(xdata)
。在你的情况下,我会尝试类似的东西:
import numpy
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
def _polynomial(x, *p):
"""Polynomial fitting function of arbitrary degree."""
poly = 0.
for i, n in enumerate(p):
poly += n * x**i
return poly
# Define some test data:
x = numpy.linspace(0., numpy.pi)
y = numpy.cos(x) + 0.05 * numpy.random.normal(size=len(x))
# p0 is the initial guess for the fitting coefficients, set the length
# of this to be the order of the polynomial you want to fit. Here I
# have set all the initial guesses to 1., you may have a better idea of
# what values to expect based on your data.
p0 = numpy.ones(6,)
coeff, var_matrix = curve_fit(_polynomial, x, y, p0=p0)
yfit = [_polynomial(xx, *tuple(coeff)) for xx in x] # I'm sure there is a better
# way of doing this
plt.plot(x, y, label='Test data')
plt.plot(x, yfit, label='fitted data')
plt.show()
这应该给你类似的东西:
使用 numpys polyfit 例程。
http://docs.scipy.org/doc/numpy-1.3.x/reference/generated/numpy.polyfit.html