借助扩展方法和Levenshtein 距离算法
var array = new string[]{ "telekinesis", "laureate",
"Allequalsfive", "Indulgence" };
bool b = array.LooseContains("A11equalsfive", 2); //returns true
-
public static class UsefulExtensions
{
public static bool LooseContains(this IEnumerable<string> list, string word,int distance)
{
foreach (var s in list)
if (s.LevenshteinDistance(word) <= distance) return true;
return false;
}
//
//http://www.merriampark.com/ldcsharp.htm
//
public static int LevenshteinDistance(this string s, string t)
{
int n = s.Length;
int m = t.Length;
int[,] d = new int[n + 1, m + 1];
// Step 1
if (n == 0)
return m;
if (m == 0)
return n;
// Step 2
for (int i = 0; i <= n; d[i, 0] = i++){}
for (int j = 0; j <= m; d[0, j] = j++){}
// Step 3
for (int i = 1; i <= n; i++)
{
//Step 4
for (int j = 1; j <= m; j++)
{
// Step 5
int cost = (char.ToUpperInvariant(t[j - 1]) == char.ToUpperInvariant(s[i - 1])) ? 0 : 1;
// Step 6
d[i, j] = Math.Min(
Math.Min(d[i - 1, j] + 1, d[i, j - 1] + 1),
d[i - 1, j - 1] + cost);
}
}
// Step 7
return d[n, m];
}
}