我在串行 I/O 方面没有太多经验,但最近的任务是修复一些有严重缺陷的串行代码,因为最初的程序员已经离开了公司。
该应用程序是一个 Windows 程序,它通过在 USB 上运行的虚拟 COMM 端口与科学仪器进行串行通信。虚拟 COMM 端口 USB 驱动程序由 FTDI 提供,因为它们制造了我们在仪器上使用的 USB 芯片。
串行代码位于非托管 C++ DLL 中,由我们的旧 C++ 软件和新的 C# / .Net (WinForms) 软件共享。
有两个主要问题:
在许多 XP 系统上失败
当第一个命令发送到仪器时,没有响应。当您发出下一个命令时,您会得到第一个命令的响应。
这是一个典型的使用场景(调用方法的完整源代码如下):
char szBuf [256];
CloseConnection ();
if (OpenConnection ())
{
ClearBuffer ();
// try to get a firmware version number
WriteChar ((char) 'V');
BOOL versionReadStatus1 = ReadString (szBuf, 100);
...
}
在失败的系统上,ReadString 调用将永远不会收到任何串行数据,并且会超时。但是,如果我们发出另一个不同的命令,并再次调用 ReadString,它将返回来自第一个命令的响应,而不是新命令!
但这只会发生在 Windows XP 系统的大部分子集上 - 而不会发生在 Windows 7 上。幸运的是,我们的 XP 开发机器工作正常,所以直到我们开始 beta 测试才发现问题。但我也可以通过在我的 XP 开发机器上运行 XP VM(VirtualBox)来重现该问题。此外,仅在将 DLL 与新的 C# 版本一起使用时才会出现问题 - 与旧的 C++ 应用程序一起工作正常。
当我在调用 ClearCommError 之前将 Sleep(21) 添加到低级 BytesInQue 方法时,这似乎得到了解决,但这加剧了另一个问题 - CPU 使用率。睡眠时间少于 21 毫秒会使故障模式重新出现。
高 CPU 使用率
进行串行 I/O 时 CPU 使用率过高 - 通常超过 90%。新的 C# 应用程序和旧的 C++ 应用程序都会发生这种情况,但在新应用程序中更糟。通常会使 UI 非常无响应,但并非总是如此。
下面是我们的 Port.cpp 类的代码,总之它是可怕的荣耀。对不起,这就是我正在使用的。最重要的方法可能是OpenConnection、ReadString、ReadChar 和 BytesInQue。
//
// Port.cpp: Implements the CPort class, which is
// the class that controls the serial port.
//
// Copyright (C) 1997-1998 Microsoft Corporation
// All rights reserved.
//
// This source code is only intended as a supplement to the
// Broadcast Architecture Programmer's Reference.
// For detailed information regarding Broadcast
// Architecture, see the reference.
//
#include <windows.h>
#include <stdio.h>
#include <assert.h>
#include "port.h"
// Construction code to initialize the port handle to null.
CPort::CPort()
{
m_hDevice = (HANDLE)0;
// default parameters
m_uPort = 1;
m_uBaud = 9600;
m_uDataBits = 8;
m_uParity = 0;
m_uStopBits = 0; // = 1 stop bit
m_chTerminator = '\n';
m_bCommportOpen = FALSE;
m_nTimeOut = 50;
m_nBlockSizeMax = 2048;
}
// Destruction code to close the connection if the port
// handle was valid.
CPort::~CPort()
{
if (m_hDevice)
CloseConnection();
}
// Open a serial communication port for writing short
// one-byte commands, that is, overlapped data transfer
// is not necessary.
BOOL CPort::OpenConnection()
{
char szPort[64];
m_bCommportOpen = FALSE;
// Build the COM port string as "COMx" where x is the port.
if (m_uPort > 9)
wsprintf(szPort, "\\\\.\\COM%d", m_uPort);
else
wsprintf(szPort, "COM%d", m_uPort);
// Open the serial port device.
m_hDevice = CreateFile(szPort,
GENERIC_WRITE | GENERIC_READ,
0,
NULL, // No security attributes
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL,
NULL);
if (m_hDevice == INVALID_HANDLE_VALUE)
{
SaveLastError ();
m_hDevice = (HANDLE)0;
return FALSE;
}
return SetupConnection(); // After the port is open, set it up.
} // end of OpenConnection()
// Configure the serial port with the given settings.
// The given settings enable the port to communicate
// with the remote control.
BOOL CPort::SetupConnection(void)
{
DCB dcb; // The DCB structure differs betwwen Win16 and Win32.
dcb.DCBlength = sizeof(DCB);
// Retrieve the DCB of the serial port.
BOOL bStatus = GetCommState(m_hDevice, (LPDCB)&dcb);
if (bStatus == 0)
{
SaveLastError ();
return FALSE;
}
// Assign the values that enable the port to communicate.
dcb.BaudRate = m_uBaud; // Baud rate
dcb.ByteSize = m_uDataBits; // Data bits per byte, 4-8
dcb.Parity = m_uParity; // Parity: 0-4 = no, odd, even, mark, space
dcb.StopBits = m_uStopBits; // 0,1,2 = 1, 1.5, 2
dcb.fBinary = TRUE; // Binary mode, no EOF check : Must use binary mode in NT
dcb.fParity = dcb.Parity == 0 ? FALSE : TRUE; // Enable parity checking
dcb.fOutX = FALSE; // XON/XOFF flow control used
dcb.fInX = FALSE; // XON/XOFF flow control used
dcb.fNull = FALSE; // Disable null stripping - want nulls
dcb.fOutxCtsFlow = FALSE;
dcb.fOutxDsrFlow = FALSE;
dcb.fDsrSensitivity = FALSE;
dcb.fDtrControl = DTR_CONTROL_ENABLE;
dcb.fRtsControl = RTS_CONTROL_DISABLE ;
// Configure the serial port with the assigned settings.
// Return TRUE if the SetCommState call was not equal to zero.
bStatus = SetCommState(m_hDevice, &dcb);
if (bStatus == 0)
{
SaveLastError ();
return FALSE;
}
DWORD dwSize;
COMMPROP *commprop;
DWORD dwError;
dwSize = sizeof(COMMPROP) + sizeof(MODEMDEVCAPS) ;
commprop = (COMMPROP *)malloc(dwSize);
memset(commprop, 0, dwSize);
if (!GetCommProperties(m_hDevice, commprop))
{
dwError = GetLastError();
}
m_bCommportOpen = TRUE;
return TRUE;
}
void CPort::SaveLastError ()
{
DWORD dwLastError = GetLastError ();
LPVOID lpMsgBuf;
FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT_MESSAGE_IGNORE_INSERTS,
NULL,
dwLastError,
MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), // Default language
(LPTSTR) &lpMsgBuf,
0,
NULL);
strcpy (m_szLastError,(LPTSTR)lpMsgBuf);
// Free the buffer.
LocalFree( lpMsgBuf );
}
void CPort::SetTimeOut (int nTimeOut)
{
m_nTimeOut = nTimeOut;
}
// Close the opened serial communication port.
void CPort::CloseConnection(void)
{
if (m_hDevice != NULL &&
m_hDevice != INVALID_HANDLE_VALUE)
{
FlushFileBuffers(m_hDevice);
CloseHandle(m_hDevice); ///that the port has been closed.
}
m_hDevice = (HANDLE)0;
// Set the device handle to NULL to confirm
m_bCommportOpen = FALSE;
}
int CPort::WriteChars(char * psz)
{
int nCharWritten = 0;
while (*psz)
{
nCharWritten +=WriteChar(*psz);
psz++;
}
return nCharWritten;
}
// Write a one-byte value (char) to the serial port.
int CPort::WriteChar(char c)
{
DWORD dwBytesInOutQue = BytesInOutQue ();
if (dwBytesInOutQue > m_dwLargestBytesInOutQue)
m_dwLargestBytesInOutQue = dwBytesInOutQue;
static char szBuf[2];
szBuf[0] = c;
szBuf[1] = '\0';
DWORD dwBytesWritten;
DWORD dwTimeOut = m_nTimeOut; // 500 milli seconds
DWORD start, now;
start = GetTickCount();
do
{
now = GetTickCount();
if ((now - start) > dwTimeOut )
{
strcpy (m_szLastError, "Timed Out");
return 0;
}
WriteFile(m_hDevice, szBuf, 1, &dwBytesWritten, NULL);
}
while (dwBytesWritten == 0);
OutputDebugString(TEXT(strcat(szBuf, "\r\n")));
return dwBytesWritten;
}
int CPort::WriteChars(char * psz, int n)
{
DWORD dwBytesWritten;
WriteFile(m_hDevice, psz, n, &dwBytesWritten, NULL);
return dwBytesWritten;
}
// Return number of bytes in RX queue
DWORD CPort::BytesInQue ()
{
COMSTAT ComStat ;
DWORD dwErrorFlags;
DWORD dwLength;
// check number of bytes in queue
ClearCommError(m_hDevice, &dwErrorFlags, &ComStat ) ;
dwLength = ComStat.cbInQue;
return dwLength;
}
DWORD CPort::BytesInOutQue ()
{
COMSTAT ComStat ;
DWORD dwErrorFlags;
DWORD dwLength;
// check number of bytes in queue
ClearCommError(m_hDevice, &dwErrorFlags, &ComStat );
dwLength = ComStat.cbOutQue ;
return dwLength;
}
int CPort::ReadChars (char* szBuf, int nMaxChars)
{
if (BytesInQue () == 0)
return 0;
DWORD dwBytesRead;
ReadFile(m_hDevice, szBuf, nMaxChars, &dwBytesRead, NULL);
return (dwBytesRead);
}
// Read a one-byte value (char) from the serial port.
int CPort::ReadChar (char& c)
{
static char szBuf[2];
szBuf[0] = '\0';
szBuf[1] = '\0';
if (BytesInQue () == 0)
return 0;
DWORD dwBytesRead;
ReadFile(m_hDevice, szBuf, 1, &dwBytesRead, NULL);
c = *szBuf;
if (dwBytesRead == 0)
return 0;
return dwBytesRead;
}
BOOL CPort::ReadString (char *szStrBuf , int nMaxLength)
{
char str [256];
char str2 [256];
DWORD dwTimeOut = m_nTimeOut;
DWORD start, now;
int nBytesRead;
int nTotalBytesRead = 0;
char c = ' ';
static char szCharBuf [2];
szCharBuf [0]= '\0';
szCharBuf [1]= '\0';
szStrBuf [0] = '\0';
start = GetTickCount();
while (c != m_chTerminator)
{
nBytesRead = ReadChar (c);
nTotalBytesRead += nBytesRead;
if (nBytesRead == 1 && c != '\r' && c != '\n')
{
*szCharBuf = c;
strncat (szStrBuf,szCharBuf,1);
if (strlen (szStrBuf) == nMaxLength)
return TRUE;
// restart timer for next char
start = GetTickCount();
}
// check for time out
now = GetTickCount();
if ((now - start) > dwTimeOut )
{
strcpy (m_szLastError, "Timed Out");
return FALSE;
}
}
return TRUE;
}
int CPort::WaitForQueToFill (int nBytesToWaitFor)
{
DWORD start = GetTickCount();
do
{
if (BytesInQue () >= nBytesToWaitFor)
break;
if (GetTickCount() - start > m_nTimeOut)
return 0;
} while (1);
return BytesInQue ();
}
int CPort::BlockRead (char * pcInputBuffer, int nBytesToRead)
{
int nBytesRead = 0;
int charactersRead;
while (nBytesToRead >= m_nBlockSizeMax)
{
if (WaitForQueToFill (m_nBlockSizeMax) < m_nBlockSizeMax)
return nBytesRead;
charactersRead = ReadChars (pcInputBuffer, m_nBlockSizeMax);
pcInputBuffer += charactersRead;
nBytesRead += charactersRead;
nBytesToRead -= charactersRead;
}
if (nBytesToRead > 0)
{
if (WaitForQueToFill (nBytesToRead) < nBytesToRead)
return nBytesRead;
charactersRead = ReadChars (pcInputBuffer, nBytesToRead);
nBytesRead += charactersRead;
nBytesToRead -= charactersRead;
}
return nBytesRead;
}
根据我的测试和阅读,我在这段代码中看到了几个可疑的地方:
永远不会设置 COMMTIMEOUTS。MS 文档说“如果您未能设置超时值,可能会出现不可预测的结果”。但是我尝试设置这个,它没有帮助。
许多方法(例如 ReadString)如果没有立即获得数据,就会进入一个紧密的循环并通过重复读取来敲击端口。这似乎可以解释高 CPU 使用率。
许多方法都有自己的超时处理,使用 GetTickCount()。这不是 COMMTIMEOUTS 的用途吗?
在新的 C# (WinForms) 程序中,所有这些串行例程都直接从主线程调用,来自 MultiMediaTimer 事件。也许应该在不同的线程中运行?
BytesInQue 方法似乎是一个瓶颈。如果我在 CPU 使用率很高时中断调试器,那通常是程序停止的地方。此外,在调用 ClearCommError 之前向该方法添加 Sleep(21) 似乎可以解决 XP 问题,但会加剧 CPU 使用问题。
代码似乎不必要地复杂。
我的问题
谁能解释为什么这只适用于少数 XP 系统上的 C# 程序?
关于如何重写这个有什么建议吗?指向良好示例代码的指针将是最受欢迎的。